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A bit of philosophy

1 How to learn
I see one
I do one
I teach one

2 Arguments by authority
I are contemptible as an intellectual stance
I offer only reference for demonstration
I of course, there is usually a layer of deeper understanding that is

assumed
3 what is our goal? ability to

I evaluate properties of statistical methods
what is it we learn from the use of a model? why?

I better map existing methods to application, and vice versa
evaluate suitability of application
choose better /proper methods

I extend and develop statistical
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Thurstone: discriminal process
With two choices, and ε iid Gumbel, then

P(j , k) = P(uj > uk )

= P(µj − µk + εj > εk )

=

∫ ∞
−∞

λ(εj)

∫ µj−µk+εj

−∞
λ(εk )

=

∫ ∞
−∞

λ(εj)Λ(µj − µk + εj)

=

∫ ∞
−∞

λ(εj)Λ(µj − µk + εj)

=
1
w

∫ ∞
−∞
−e−εj w exp{−e−εj w}

=
1
w

=
1

1 + exp{−(µj − µk )}
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Generalized Choice: multinomial

P(y = 1) =

∞∫
−∞

e−ε1e−e−ε1 e−e−ε1 (1+eµ2−µ1+eµ3−µ1 )∂ε1

=
1 + eµ2−µ1 + eµ3−µ1

1 + eµ2−µ1 + eµ3−µ1

∞∫
−∞

e−ε1e−e−ε1 (1+eµ2−µ1+eµ3−µ1 )∂ε1

=
1

1 + eµ2−µ1 + eµ3−µ1

P(y = 2) =
1

1 + eµ1−µ2 + eµ3−µ2

P(y = 3) =
1

1 + eµ1−µ3 + eµ2−µ3
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Definitions
Definition (Likelihood)
L(θ | y) is a known density evaluated as function parameter values θ
given data y .

NOTE:
Likelihood of n observations

L(θ | y) = L(θ | y1, y2, . . . , yn) = f (y1, y2, . . . , yn | θ)

if iid observations

L(θ | y1, y2, . . . , yn) = f (y1 | θ)f (y2 | θ) · · · f (yn | θ)

almost always easier to deal with natural log

L(θ | y1, y2, . . . yn) =
∑

n

ln f (yi | θ)
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Definitions

Definition (MLE)

Maximum Likelihood Estimate (MLE) θ̂

Type I: L(θ̂ | y) ≥ L(θ | y) for all θ

Type II: S(θ̂ | y) = 0

Definition (Score)

S(θ | y) =
∂

∂θ
L(θ | y1, y2, . . . yn)
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Likelihood for a dichotomous choice

Assume each yi is drawn independently.

What does independence imply for the joint probability of events?

Joint likelihood of n observations of choices,

L =
n∏

i=1

Li =
n∏

i=1

pyi (1− p)1−yi

And, log-likelihood,

L =
n∑

i=1

Li =
n∑

i=1

[yi log(p) + (1− yi) log(1− p)]
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Likelihood for a dichotomous choice

Homogeneous / same p for all draws

L =
n∑

i=1

Li =
n∑

i=1

[yi log(p) + (1− yi) log(1− p)]

allow pi to differ by draws (i.e., by person)

Li = yi log(pi) + (1− yi) log(1− pi)

How many parameters would this require for n people?
reduce n unknowns to the k unkowns, with γ being k -vector

Li = yi log(Λ(xiγ)) + (1− yi) log(1− Λ(xiγ))
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Likelihood for a dichotomous choice

Standard parameterizations for k-vector of covariates xi ,
1 Probit:

1 a(x , β) = xβ
2 F (xβ) =

∫ xβ
−∞

1√
2π

exp{− z2

2 } =
∫ xβ
−∞ φ(z) = Φ(xβ)

3 Li = yi log(Φ(xiβ)) + (1− yi ) log(1− Φ(xiβ))

2 Logit
1 a(x , γ) = xγ
2 F (xγ) = 1

1+exp{−xγ} = Λ(xγ)

3 Li = yi log(Λ(xiγ)) + (1− yi ) log(1− Λ(xiγ))
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Questions:

what does mnl imply about relationship between choices
how to interpret model? dP(y |x)/dx? P(y |x = 1)− P(y |x = 0)?
what is in µ? endogeneity of choices?
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Spatial model

Consider three parties in unidimensional model
where should parties locate?
depends on whether there is threat of entry or not? stackleberg
equilibrium
most stat models treat location as given
what party should a party vote for?
how should voter make choice?
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Axiomatic Foundations of Choice Models

Assumptions
D1 Let R ⊂ S ⊂ T ⊂ U.
D2 Let x , y , z ∈ T , arbitrary elements of choice set.
D3 Let P(x , y) be the probability of choosing x instead of y ,

0 < P(x , y) < 1.
D4 PS(R) is the probability of choosing R given choice from among

alternatives in S.
Choice Axiom

(i) PT (R) = PS(R)PT (S)

(ii) If P(x , y) = 0 for some x , y ∈ T , PT (S) = PT−{x}(S − {x})
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Axiomatic Foundations of Choice Models

Axiom of Choice
Defines relationship which defines how choices within subsets are
related in the context of an individual making probabilistic choices.
Can be rewritten as PT (R | S)PT (S) = PT (R)

Two core implications,
Lemma 3: Independence of Irrelevant Alternatives (IIA)
Theorem 3: Probability must satisfy a ratio scale
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Axiomatic Foundations of Choice Models
Lemma 3 (Independence from irrelevant alternatives):
For x , y ∈ S,

P(x , y)

P(y , x)
=

PS(x)

PS(y)

Proof:
By Axiom we have

PS(x) = P(x , y)[PS(x) + PS(y)]

So

PS(x) = P(x , y)[PS(x) + PS(y)]

PS(x) = P(x , y)PS(x) + P(x , y)PS(y)

(1− P(x , y))PS(x) = P(x , y)PS(y)

P(y , x)PS(x) = P(x , y)PS(y)

P(x , y)

P(y , x)
=

PS(x)

PS(y)
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
What does this mean?

relative probability of choosing two alternatives is invariant to the
composition of the larger set of alternatives.
Only ratio is invariant, not probabilities themselves
Might also hear that log-odds of two choices are constant:
log(PS(x))− log(PS(y)) = c.
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
Why so cool?

can estimate parameters defining utility of choices even with only
a subset.
** Not generally possible if IIA does not hold (e.g., correlation
between utilities of choices)—then to estimate any choice must
model all choices.
** Neither holds in general for models of choice (by design) nor is
it plausible that it in general holds empirically.
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Axiomatic Foundations of Choice Models

Theorem 3: choice probability is ratio scale
∃v : T → <+, unique up to multiplication by k > 0, such that

PS(x) =
v(x)∑

y∈S v(y)
=

1
1 +

∑
y∈S−{x} v(y)/v(x)

McFadden and Yellot have each pointed out the connection to logit
models by setting v(x) = ex .

E.g.,

P(x , y) =
v(x)

v(x) + v(y)
=

eµx

eµx + eµy
=

1
1 + eµy/eµx

=
1

1 + e−(µx−µy )

Yellot shows that discriminal process based on Type I discrete value
distribution is uniquely equivalent to Choice Axiom.
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Axiomatic Foundations of Choice Models

Let S ∈ {1,2,3}, and PS(j) be probability of choosing j from S,

PS(y = 1) =
1

1 + eµ2−µ1 + eµ3−µ1
=

eµ1

eµ1 + eµ2 + eµ3

PS(y = 2) =
1

1 + eµ1−µ2 + eµ3−µ2
=

eµ2

eµ1 + eµ2 + eµ3

PS(y = 3) =
1

1 + eµ1−µ3 + eµ2−µ3
=

eµ3

eµ1 + eµ2 + eµ3

So,

PS(y = 1)

PS(y = 2)
=

eµ1

eµ2
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Axiomatic Foundations of Choice Models

Let T ∈ {1,2}, and PT (j) be probability of choosing j from T ,
Recal logit (special case of MNL),

PT (y = 1) =
1

1 + eµ2−µ1
=

eµ1

eµ1 + eµ2

PT (y = 2) =
1

1 + eµ1−µ2
=

eµ2

eµ2 + eµ2

So,

PT (y = 1)

PT (y = 2)
=

eµ1

eµ2
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Axiomatic Foundations of Choice Models

Comparing probabilities of choosing 1 and 2 in logit and MNL,

PT (1)

PT (2)
=

eµ1

eµ2
=

PS(1)

PS(2)

MNL conforms to Choice Axiom/IIA.

See Yellot (1977) and McFadden (1973) for connections between Luce
and EV Type 1.
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