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Spatial model

Consider three parties in unidimensional model
where should parties locate?
depends on whether there is threat of entry or not? stackleberg
equilibrium
most stat models treat location as given
what party should a party vote for?
how should voter make choice?
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Axiomatic Foundations of Choice Models

Assumptions
D1 Let R ⊂ S ⊂ T ⊂ U.
D2 Let x , y , z ∈ T , arbitrary elements of choice set.
D3 Let P(x , y) be the probability of choosing x instead of y ,

0 < P(x , y) < 1.
D4 PS(R) is the probability of choosing R given choice from among

alternatives in S.
Choice Axiom

(i) PT (R) = PS(R)PT (S)

(ii) If P(x , y) = 0 for some x , y ∈ T , PT (S) = PT−{x}(S − {x})
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Axiomatic Foundations of Choice Models

Axiom of Choice
Defines relationship which defines how choices within subsets are
related in the context of an individual making probabilistic choices.
Can be rewritten as PT (R | S)PT (S) = PT (R)

Two core implications,
Lemma 3: Independence of Irrelevant Alternatives (IIA)
Theorem 3: Probability must satisfy a ratio scale
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Axiomatic Foundations of Choice Models
Lemma 3 (Independence from irrelevant alternatives):
For x , y ∈ S,

P(x , y)
P(y , x)

=
PS(x)
PS(y)

Proof:
By Axiom we have

PS(x) = P(x , y)[PS(x) + PS(y)]

So

PS(x) = P(x , y)[PS(x) + PS(y)]
PS(x) = P(x , y)PS(x) + P(x , y)PS(y)

(1− P(x , y))PS(x) = P(x , y)PS(y)
P(y , x)PS(x) = P(x , y)PS(y)

P(x , y)
P(y , x)

=
PS(x)
PS(y)
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
What does this mean?

relative probability of choosing two alternatives is invariant to the
composition of the larger set of alternatives.
Only ratio is invariant, not probabilities themselves
Might also hear that log-odds of two choices are constant:
log(PS(x))− log(PS(y)) = c.
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
Why so cool?

can estimate parameters defining utility of choices even with only
a subset.
** Not generally possible if IIA does not hold (e.g., correlation
between utilities of choices)—then to estimate any choice must
model all choices.
** Neither holds in general for models of choice (by design) nor is
it plausible that it in general holds empirically.
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Axiomatic Foundations of Choice Models

Theorem 3: choice probability is ratio scale
∃v : T → <+, unique up to multiplication by k > 0, such that

PS(x) =
v(x)∑

y∈S v(y)
=

1
1 +

∑
y∈S−{x} v(y)/v(x)

McFadden and Yellot have each pointed out the connection to logit
models by setting v(x) = ex .

E.g.,

P(x , y) =
v(x)

v(x) + v(y)
=

eµx

eµx + eµy
=

1
1 + eµy/eµx

=
1

1 + e−(µx−µy )

Yellot shows that discriminal process based on Type I discrete value
distribution is uniquely equivalent to Choice Axiom.
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Axiomatic Foundations of Choice Models

Let S ∈ {1,2,3}, and PS(j) be probability of choosing j from S,

PS(y = 1) =
1

1 + eµ2−µ1 + eµ3−µ1
=

eµ1

eµ1 + eµ2 + eµ3

PS(y = 2) =
1

1 + eµ1−µ2 + eµ3−µ2
=

eµ2

eµ1 + eµ2 + eµ3

PS(y = 3) =
1

1 + eµ1−µ3 + eµ2−µ3
=

eµ3

eµ1 + eµ2 + eµ3

So,

PS(y = 1)
PS(y = 2)

=
eµ1

eµ2
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Axiomatic Foundations of Choice Models

Let T ∈ {1,2}, and PT (j) be probability of choosing j from T ,
Recal logit (special case of MNL),

PT (y = 1) =
1

1 + eµ2−µ1
=

eµ1

eµ1 + eµ2

PT (y = 2) =
1

1 + eµ1−µ2
=

eµ2

eµ2 + eµ2

So,

PT (y = 1)
PT (y = 2)

=
eµ1

eµ2
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Axiomatic Foundations of Choice Models

Comparing probabilities of choosing 1 and 2 in logit and MNL,

PT (1)
PT (2)

=
eµ1

eµ2
=

PS(1)
PS(2)

MNL conforms to Choice Axiom/IIA.

See Yellot (1977) and McFadden (1973) for connections between Luce
and EV Type 1.
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Classical experiment

Let (Y ,X ,D) be observable random variables,
1 Yi is the outcome of interest
2 Xi a “pre-determined” variable
3 Di indicator for treatment status

Researcher chooses an assignment mechanism. E.g.,
1 randomly draw a unit from a population
2 assign treatment Di = 1 to unit with probability p
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Some notation – potential outcomes

For dichomtous treatments,
Zi ∈ {0,1}: assigment indicator
Di ∈ {0,1}: received treatment indicator

allowing possibility that Zi 6= Di
Define potential outcomes, Yi(Di):

Yi(1): outcome if treated
Yi(0): outcome if not treated

later we will also consider Yi(Zi ,Di)

Y (0,0): neither assigned nor treated
Y (0,1): not assigned, yet treated
Y (1,0): assigned yet not treated
Y (1,1): assigned and treated
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Fundamental Problem of Causal Inference

Causal Effect (CE),

τi = Yi(1)− Yi(0)

Key ideas:
cannot observe both Yi(1) and Yi(0).
causal effect may be heterogeneous (no structure in definition)
hence τi is indexed by i

What do we observe?

Yi = DiYi(Di = 1) + [1− Di ]Yi(Di = 0)
= Yi(Di = 0) + Di [Yi(Di = 1)− Yi(Di = 0)]
= Yi(Di = 0) + Diτi

which is control outome, plus CE if treated
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Examples of Estimands

We can’t observe τi , could we estimate the following?
Population average treatment effect, PATE

τP = E [Yi(1)− Yi(0)]

Population average treatment effect for treated, PATT

τP,T = E [Yi(1)− Yi(0) | Di = 1]

Notes:
Hm, still involve both Yi(1) and Yi(0) for each i ...
often will refer to PATE simply as ATE.
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Difference in observed outcomes
Consider

1
nt

∑

i:Di=1

Yi(1)−
1
nc

∑

i:Di=0

Yi(0)

with some regularity conditions, as sample of each treatment gets big...

plim
1
nt

∑

i:Di=1

Yi(1)→ E [Yi(1) | Di = 1]

plim
1
nc

∑

i:Di=0

Yi(0)→ E [Yi(0) | Di = 0]

Question: how does the limiting conditional difference,

E [Yi(1) | Di = 1]− E [Yi(0) | Di = 0] (1)

relate to PATE

τP = E [Yi(1)]− E [Yi(0)]

Does (1) identify a quantify of interest?
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A point worth emphasizing

Coherent to refer to Yi(0) for someone assigned to Di = 1?
or to refer to Yi(1) for someone assigned to Di = 0?

Unobserved Perfect Doctor
Unit Truth Unit CE Assigned Observed

i Yi(0) Yi(1) Yi(1)− Yi(0) Di Yi(0) Yi(1)
—– —– ————- —– —– —–

1 13 14 1 1 ? 14
2 6 0 -6 0 6 ?
3 4 1 -3 0 4 ?
...
6 6 1 -5 0 6 ?
7 8 10 2 1 ? 10
8 8 9 1 1 ? 9

Conditional expectation E [Yi(j)|D = j] depends on assignement
mechanism.
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Comparing treated and control

E [Yi | Di = 1]− E [Yi | Di = 0]

= E [Yi(1) | Di = 1]− E [Yi(0) | Di = 0]

= E [Yi(1) | Di = 1]− E [Yi(0) | Di = 0] + E [Yi(0) | Di = 1]− E [Yi(0) | Di = 1]

= {E [Yi(1) | Di = 1]− E [Yi(0) | Di = 1]}+ {E [Yi(0) | Di = 1]− E [Yi(0) | Di = 0]}

= E [Yi(1)− Yi(0) | Di = 1] + {E [Yi(0) | Di = 1]− E [Yi(0) | Di = 0]}

Describe each of these in words

E [Yi(1) | Di = 1]− E [Yi(0) | Di = 0]: avg difference in outcomes
E [Yi(1)− Yi(0) | Di = 1]: average treatment effect on treated
E [Yi(0) | Di = 1]− E [Yi(0) | Di = 0] 6= 0: if selection bias

Question: what could you do, knowing this decomposition?
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Difference in observed outcomes - randomized
What does simple randomization give us?

Yi(0),Yi(1) ⊥⊥ Di

therefore,

E [Yi(0) | Di = 0] = E [Yi(0) | Di = 1] = E [Yi(0)]
E [Yi(1) | Di = 0] = E [Yi(1) | Di = 1] = E [Yi(1)]

Thus, no selection bias,

0 = E [Yi(0) | Di = 1]− E [Yi(0) | Di = 0]

and thus,

E [Yi | Di = 1]− E [Yi | Di = 0]

= E [Yi(1)− Yi(0) | Di = 1] + {E [Yi(0) | Di = 1]− E [Yi(0) | Di = 0]}

= E [Yi(1)− Yi(0) | Di = 1] = PATT
= E [Yi(1)− Yi(0)] = PATE
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Let’s generalize to accomodate differences conditional on
pre-treatment variables...

allow for different assignement probabiliteis as a function of
observables
what do we need to assume to identify ATE in this more general
case?
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Key concepts: Unconfoundedness

An assignment is unconfounded if the assignment mechanism is
independent of the potential outcomes.

Yi(0),Yi(1) ⊥⊥ Di | Xi

(can also be unconditional)

Many labels for essentially the same idea:
“ignorable treatment assignment”
Rosenbaum and Rubin (1983)
“conditional independence assumption”
Lechner (1999, 2002)
“selection on observables”
Barnow, Cain, and Goldberger (1980)
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Key concepts: Unconfoundedness

In experiments,
may stratify on an observable variable (or more than one)
stratification useful to ensure both treatments within a rare group

In observational studies,
applications approximating an experiment seek to justify
unconfoundeness is acheived prior to making comparisons
assumes that all variables necessary for understanding
assignment mechanism are observable
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Key concepts: Unconfoundedness – violations

Perfect Pollster

Di =

{
1 if Yi(1) > Yi(0)
0 if Yi(1) ≤ Yi(0)

Pretty good pollster, p > .5

P(Di = 1) =

{
p if Yi(1) > Yi(0)
1− p if Yi(1) ≤ Yi(0)
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Key concepts: Probabilistic assignment

Probabilistic assignment, for all X ,

0 < Pr(Di = 1 | X ) < 1

Also known as
“overlap”
common support on X

Jonathan Wand (Stanford University) Statistical Methods III: Spring 2013 Choice models: generalize III 27 / 44



Key concepts: Probabilistic assignment – violation

If Pr(Di = 1 | X ) = 1
then there exists no observation of E [Y | X ,D = 0].
(and mirror problem for Pr(Di = 1 | X ) = 0)

For example,

Xi E [Yi(0) | xi ] E [Yi(1) | xi ] P(Di = 1 | xi)
0 0 1 0.4
1 2 5 1

Question:
can we still make inference for subset where X = 0?
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An alternative estimand - conditional

Conditional average treatment effect, CATE

τC =
1
N

∑

i

E [Yi(1)− Yi(0) | Xi ]

Conditional average treatment effect for treated, CATT

τC,T =
1

NT

∑

i:Di=1

E [Yi(1)− Yi(0) | Xi ]

Notes:
ATE conditional on sample distribution of X
intrinsically of interest if representativeness of sample is dubious
and can condition on subset of X (it is pre-treatment)
in matching methods, will often trim to area of common support.
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Unconfoundness + Overlap = (C)ATE identifiable

By unconfoundedness,

E [Y | D = d ,X = x ] = E [Y (d) | D = d ,X = x ]
= E [Y (d) | X = x ]

By overlap, we observe for each subpoluation x ,

E [Y | D = 1,X = x ]− E [Y | D = 0,X = x ]
= E [Y (1) | D = 1,X = x ]− E [Y (0) | D = 0,X = x ]
= E [Y (1) | X = x ]− E [Y (0) | X = x ]
= E [Y (1)− Y (0) | X = x ]
= τ(x)

Can weight over distribution of X in sample to get CATE, or population
distribution of X to get ATE, E [τi ]
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Endogenous assignement

practice. We derive the conditions under which parameters in the models are identifi-
able; we believe these results are new. The literature on models for self-selection is
huge, and so is the literature on probits; we conclude with a brief review of a few salient
papers.

To define the models and estimation procedures, consider n subjects, indexed by
i5 1; . . . ; n. Subjects are assumed to be independent and identically distributed. For each
subject, there are two manifest variables Xi, Zi and two latent variables Ui, Vi. Assume that
(Ui, Vi) are bivariate normal, with mean 0, variance 1, and correlation q. Assume further
that (Xi, Zi) is independent of (Ui, Vi), that is, the manifest variables are exogenous. For ease
of exposition, we take (Xi, Zi) as bivariate normal, although that is not essential. Until
further notice, we set the means to 0, the variances to 1, the correlation between Xi

and Zi to 0.40, and sample size n to 1000.

2 A Probit Response Model with an Endogenous Regressor

There are two equations in the model. The first is the selection equation:

Ci 5 1 if a1 bXi 1Ui > 0; else Ci 5 0: ð1Þ

In application, Ci 5 1 means that subject i self-selects into treatment. The second equation
defines the subject’s response to treatment:

Yi 5 1 if c1 dZi 1 eCi 1Vi > 0; else Yi 5 0: ð2Þ

Notice that Yi is binary rather than continuous. The data are the observed values of Xi, Zi,Ci,
Yi. For example, the treatment variable Ci may indicate whether subject i graduated from
college; the response Yi, whether i has a full-time job.

Endogeneity bias is likely in (2). Indeed, Ci is endogenous due to the correlation q be-
tween the latent variables Ui and Vi. A two-step correction for endogeneity is sometimes
used (although it should not be):

Step 1. Estimate the probit model (1) by likelihood techniques.

Step 2. To estimate (2), fit the expanded probit model

PðYi 5 1jXi; Zi;CiÞ5Uðc1 dZi 1 eCi 1 fMiÞ ð3Þ

to the data, where

Mi 5Ci
/ða1 bXiÞ
Uða1 bXiÞ

2ð12CiÞ
/ða1 bXiÞ

12Uða1 bXiÞ
: ð4Þ

Here, U is the standard normal distribution function with density u 5 U#. In application,
a and b in (4) would be unknown. These parameters are replaced by maximum likelihood
estimates (MLEs) obtained from Step 1. The motivation for Mi is explained in Section 6
below. Identifiability is discussed in Section 7: according to Proposition 1, parameters are
identifiable unless b 5 d 5 0.

The operating characteristics of the two-step correction were determined in a simulation
study which draws 500 independent samples of size n 5 1000. Each sample was con-
structed as described above. We set a 5 0.50, b 5 1, and q 5 0.60. These choices create
an environment favorable to correction.
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Endogenous assignement

practice. We derive the conditions under which parameters in the models are identifi-
able; we believe these results are new. The literature on models for self-selection is
huge, and so is the literature on probits; we conclude with a brief review of a few salient
papers.
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subject, there are two manifest variables Xi, Zi and two latent variables Ui, Vi. Assume that
(Ui, Vi) are bivariate normal, with mean 0, variance 1, and correlation q. Assume further
that (Xi, Zi) is independent of (Ui, Vi), that is, the manifest variables are exogenous. For ease
of exposition, we take (Xi, Zi) as bivariate normal, although that is not essential. Until
further notice, we set the means to 0, the variances to 1, the correlation between Xi

and Zi to 0.40, and sample size n to 1000.

2 A Probit Response Model with an Endogenous Regressor

There are two equations in the model. The first is the selection equation:

Ci 5 1 if a1 bXi 1Ui > 0; else Ci 5 0: ð1Þ

In application, Ci 5 1 means that subject i self-selects into treatment. The second equation
defines the subject’s response to treatment:
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Notice that Yi is binary rather than continuous. The data are the observed values of Xi, Zi,Ci,
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Here, U is the standard normal distribution function with density u 5 U#. In application,
a and b in (4) would be unknown. These parameters are replaced by maximum likelihood
estimates (MLEs) obtained from Step 1. The motivation for Mi is explained in Section 6
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Review: Bivariate normal
!

"

#

$

Special construction

• Take X, Z ∼ N(0, 1), independent

• Set Y = ρ X +
√

1 − ρ2 Z

• Note: E(X) = E(Y ) = 0,

V ar(X) = V ar(Y ) = 1, Corr(X, Y ) = ρ


 X

Y


 =


 1 0

ρ
√

1 − ρ2


 ·


 X

Z


 , Σ =


 1 ρ

ρ 1




• ⇒ (X, Y ) has the “standard bivariate normal” distribution

• ⇒ all properties about this distribution will follow by

studying the pair (X, Y ) defined above

9
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Endogenous assignement

5 Implications for Practice

There are two main conclusions from the simulations and the analytic results.

1. Under ordinary circumstances, the two-step correction should not be used in probit
response models. In some cases, the correction will reduce bias, but in many other
cases, the correction will increase bias.

2. If the bivariate probit model is used, special care should be taken with the numerics.
Conventional likelihood maximization algorithms produce estimates that are far
away from the MLE. Even if the MLE has good operating characteristics, the
‘‘MLE’’ found by the software package may not. Results from VGAM 0.7-6 should
be treated with caution. Results from Stata 9.2 may be questionable for various com-
binations of parameters.

The models analyzed here are very simple, with one covariate in each of (1–2) and (5–6). In
real examples, the number of covariates may be quite large, and numerical behavior will be
correspondingly more problematic.

Of course, there is a question more salient than the numerics: what is it that justifies
probit models and the like as descriptions of behavior? For additional discussion, see
Freedman (2005), which has further cites to the literature on this point.

6 Motivating the Estimator

Consider (1–2). We can represent Vi as qUi 1
ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
Wi, where Wi is an N(0, 1) random

variable, independent of Ui. Then

E
n
Vi

"""Xi 5 x;Ci 5 1
o
5E

n
qUi 1

ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
Wi

"""Ui >2a2bxi
o

5 qEfUijUi >2a2bxig

5 q
1

Uða1 bxiÞ

Z N

2a2bxi

x/ðxÞdx

5 q
/ða1 bxiÞ
Uða1 bxiÞ

ð9Þ

because PfUi > 2 a 2 bxig 5 PfUi < a 1 bxig 5 U(a 1 bxi). Likewise,

E

#
Vi

""""Xi 5 x;Ci 5 0

$
52q

/ða1 bxiÞ
12Uða1 bxiÞ

: ð10Þ

In (2), therefore, EfVi 2 qMi j Xi, Cig 5 0. If (2) were a linear regression equation, then
OLS estimates would be unbiased, the coefficient ofMi being nearly q. (These remarks take
a and b as known, with the variance of the error term in the linear regression normalized to
1.) However, (2) is not a linear regression equation: (2) is a probit model. That is the source
of the problem.

7 Identifiability

Identifiability means that parameters are determined by the joint distribution of the observ-
ables; parameters that are not identifiable cannot be estimated. In the model defined by (1–
2), the parameters are a, b, c, d, e and the correlation q between the latents; the observables
are Xi, Zi, Ci, and Yi. In the model defined by (5–6), the parameters are a, b, c, d and the
correlation q between the latents; observables are Xi;Ci; Z̃i; Ỹi, where Z̃i 5 Zi and Ỹi 5 Yi
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Endogenous assignement

practice. We derive the conditions under which parameters in the models are identifi-
able; we believe these results are new. The literature on models for self-selection is
huge, and so is the literature on probits; we conclude with a brief review of a few salient
papers.

To define the models and estimation procedures, consider n subjects, indexed by
i5 1; . . . ; n. Subjects are assumed to be independent and identically distributed. For each
subject, there are two manifest variables Xi, Zi and two latent variables Ui, Vi. Assume that
(Ui, Vi) are bivariate normal, with mean 0, variance 1, and correlation q. Assume further
that (Xi, Zi) is independent of (Ui, Vi), that is, the manifest variables are exogenous. For ease
of exposition, we take (Xi, Zi) as bivariate normal, although that is not essential. Until
further notice, we set the means to 0, the variances to 1, the correlation between Xi

and Zi to 0.40, and sample size n to 1000.

2 A Probit Response Model with an Endogenous Regressor

There are two equations in the model. The first is the selection equation:

Ci 5 1 if a1 bXi 1Ui > 0; else Ci 5 0: ð1Þ

In application, Ci 5 1 means that subject i self-selects into treatment. The second equation
defines the subject’s response to treatment:

Yi 5 1 if c1 dZi 1 eCi 1Vi > 0; else Yi 5 0: ð2Þ

Notice that Yi is binary rather than continuous. The data are the observed values of Xi, Zi,Ci,
Yi. For example, the treatment variable Ci may indicate whether subject i graduated from
college; the response Yi, whether i has a full-time job.

Endogeneity bias is likely in (2). Indeed, Ci is endogenous due to the correlation q be-
tween the latent variables Ui and Vi. A two-step correction for endogeneity is sometimes
used (although it should not be):

Step 1. Estimate the probit model (1) by likelihood techniques.

Step 2. To estimate (2), fit the expanded probit model

PðYi 5 1jXi; Zi;CiÞ5Uðc1 dZi 1 eCi 1 fMiÞ ð3Þ

to the data, where

Mi 5Ci
/ða1 bXiÞ
Uða1 bXiÞ

2ð12CiÞ
/ða1 bXiÞ

12Uða1 bXiÞ
: ð4Þ

Here, U is the standard normal distribution function with density u 5 U#. In application,
a and b in (4) would be unknown. These parameters are replaced by maximum likelihood
estimates (MLEs) obtained from Step 1. The motivation for Mi is explained in Section 6
below. Identifiability is discussed in Section 7: according to Proposition 1, parameters are
identifiable unless b 5 d 5 0.

The operating characteristics of the two-step correction were determined in a simulation
study which draws 500 independent samples of size n 5 1000. Each sample was con-
structed as described above. We set a 5 0.50, b 5 1, and q 5 0.60. These choices create
an environment favorable to correction.
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Endogenous assignement

Endogeneity is moderately strong: q 5 0.60. So there should be some advantage to
removing endogeneity bias. The dummy variable Ci is 1 with probability about 0.64,
so it has appreciable variance. Furthermore, half the variance on the right hand side of
(1) can be explained: var(bXi) 5 var(Ui). The correlation between the regressors is only
0.40: making that correlation higher exposes the correction to well-known instabilities.

The sample is large: n5 1000. Regressors are exogenous by construction. Subjects are
independent and identically distributed. Somewhat arbitrarily, we set the true value of c in
the response equation (2) to 21, whereas d 5 0.75 and e 5 0.50. As it turned out, these
choices were favorable too.

Table 1 summarizes results for three kinds of estimates:

1. raw (ignoring endogeneity);

2. the two-step correction; and

3. full maximum likelihood.

For each kind of estimate and each parameter, the table reports the mean of the estimates
across the 500 repetitions. Subtracting the true value of the parameter measures the bias in
the estimator. Similarly, the standard deviation (SD) across the repetitions, also shown in
the table, measures the likely size of the random error.

The ‘‘raw estimates’’ in Table 1 are obtained by fitting the probit model

PðYi 5 1jXi; Zi;CiÞ5Uðc1 dZi 1 eCiÞ

to the data, simply ignoring endogeneity. Bias is quite noticeable.
The two-step estimates are obtained via (3–4), with â and b̂ obtained by fitting (1). We

focus on d and e, as the parameters in equation (2) that may be given causal interpretations.
Without correction, d̂ averages about 0.72, with correction 0.83 (see Table 1). Correction
doubles the bias. Without correction, ê averages 1.33, with correction 0.54. Correction
helps a great deal, but some bias remains.

With the two-step correction, the SD of ê is about 0.21. Thus, random error in the es-
timates is appreciable, even with n 5 1000. On the other hand, the standard error (SE)

Table 1 Simulation results

c d e q

True values
21.0000 0.7500 0.5000 0.6000

Raw estimates
Mean 21.5901 0.7234 1.3285
SD 0.1184 0.0587 0.1276

Two-step
Mean 21.1118 0.8265 0.5432
SD 0.1581 0.0622 0.2081

MLE
Mean 20.9964 0.7542 0.4964 0.6025
SD 0.161 0.0546 0.1899 0.0900

Notes. Correcting endogeneity bias when the response is binary probit. There are 500 repetitions. The sample size
is 1000. The correlation between latents is q 5 0.60. The parameters in the selection equation (1) are set at a 5
0.50 and b5 1. The parameters in the response equation (2) are set at c5 –1, d5 0.75, and e5 0.50. The response
equation includes the endogenous dummy Ci defined by (1). The correlation between the exogenous regressors is
0.40. MLE computed by VGAM 0.7-6.
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Endogenous assignement

across the 500 repetitions is 0:21
! ffiffiffiffiffiffiffiffi

500
p

5 0:01. The bias in ê cannot be explained in terms
of random error in the simulation: increasing the number of repetitions will not make any
appreciable change in the estimated biases.

Heckman (1978) also suggested the possibility of fitting the full model—equations (1)
and (2)—by maximum likelihood. The full model is a ‘‘bivariate probit’’ or ‘‘biprobit’’
model. Results are shown in the last two lines of Table 1. The MLE is essentially unbiased.
The MLE is better than the two-step correction, although random error remains a concern.

We turn to some variations on the setup described in Table 1. The simulations reported
there generated new versions of the regressors on each repetition. Freezing the regressors
makes almost no difference in the results: SDs would be smaller in the third decimal place.

The results in Table 1 depend on q, the correlation between the latent variables in the
selection equation and the response equation. If q is increased from 0.60 to 0.80, say,
the performance of the two-step correction is substantially degraded. Likewise, increasing
the correlation between the exogenous regressors degrades the performance.

When q 5 0.80 and the correlation between the regressors is 0.60, the bias in the two-
step correction (3–4) for d̂ is about 0.15; for ê, about 0.20. Figure 1 plots the bias in ê
against q, with the correlation between regressors set at 0.40 or 0.60, other parameters
being fixed at their values for Table 1. The wiggles in the graph reflect variance in the
Monte Carlo (there are ‘‘only’’ 500 replicates). The MLE is less sensitive to increasing
correlations (data not shown).

Results are also sensitive to the distribution of the exogenous regressors. As the variance
in the regressors goes down, bias goes up—in the two-step estimates and in the MLE.
Furthermore, numerical issues become acute. There is some explanation: dividing the
SD of X by 10, say, is equivalent to dividing b by 10 in equation (1); similarly for Z
and d in equation (2). For small values of b and d, parameters are barely identifiable.

Figure 2 plots the bias in ê against the common SD of X and Z, which is set to values
ranging from 0.1 to 1.0 (other parameters are set as in Table 1). The light line represents the
MLE. Some of the ‘‘bias’’ in the MLE is indeed small-sample bias—when the SD is 0.1,
a sample with n5 1000 is a small sample. Some of the bias, however, reflects a tendency of
likelihood maximizers to quit before finding the global maximum.
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Fig. 1 The two-step correction. Graph of bias in ê against q, the correlation between the latents. The
light lower line sets the correlation between regressors to 0.40, and the heavy upper line sets the
correlation to 0.60. Other parameters as for Table 1. Below 0.35, the lines crisscross.
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Londgrean et al 1995
Londregan, Bienen; and van de Walle. 1995. Ethnicity and Leadership
Succession in Africa. ISQ.

Question: What is the effect of leader’s own ethnic population share on
non-constitutional replacement of leader?

Shows larger share increase probability of non-constitutional
replacement (but often replaced from within own ethnic group).

Key measure is (E)thnic (S)ize (D)ominance.
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