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Bivariate normal: derivation
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Special construction

• Take X, Z ∼ N(0, 1), independent

• Set Y = ρ X +
√

1 − ρ2 Z

• Note: E(X) = E(Y ) = 0,

V ar(X) = V ar(Y ) = 1, Corr(X, Y ) = ρ


 X

Y


 =


 1 0

ρ
√

1 − ρ2


 ·


 X

Z


 , Σ =


 1 ρ

ρ 1




• ⇒ (X, Y ) has the “standard bivariate normal” distribution

• ⇒ all properties about this distribution will follow by

studying the pair (X, Y ) defined above
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Conditional expectations
Things you need to know to derive mills ratio,
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It is this last expression which is the inverse Mills ratio. 
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Endogenous assignment

practice. We derive the conditions under which parameters in the models are identifi-
able; we believe these results are new. The literature on models for self-selection is
huge, and so is the literature on probits; we conclude with a brief review of a few salient
papers.

To define the models and estimation procedures, consider n subjects, indexed by
i5 1; . . . ; n. Subjects are assumed to be independent and identically distributed. For each
subject, there are two manifest variables Xi, Zi and two latent variables Ui, Vi. Assume that
(Ui, Vi) are bivariate normal, with mean 0, variance 1, and correlation q. Assume further
that (Xi, Zi) is independent of (Ui, Vi), that is, the manifest variables are exogenous. For ease
of exposition, we take (Xi, Zi) as bivariate normal, although that is not essential. Until
further notice, we set the means to 0, the variances to 1, the correlation between Xi

and Zi to 0.40, and sample size n to 1000.

2 A Probit Response Model with an Endogenous Regressor

There are two equations in the model. The first is the selection equation:

Ci 5 1 if a1 bXi 1Ui > 0; else Ci 5 0: ð1Þ

In application, Ci 5 1 means that subject i self-selects into treatment. The second equation
defines the subject’s response to treatment:

Yi 5 1 if c1 dZi 1 eCi 1Vi > 0; else Yi 5 0: ð2Þ

Notice that Yi is binary rather than continuous. The data are the observed values of Xi, Zi,Ci,
Yi. For example, the treatment variable Ci may indicate whether subject i graduated from
college; the response Yi, whether i has a full-time job.

Endogeneity bias is likely in (2). Indeed, Ci is endogenous due to the correlation q be-
tween the latent variables Ui and Vi. A two-step correction for endogeneity is sometimes
used (although it should not be):

Step 1. Estimate the probit model (1) by likelihood techniques.

Step 2. To estimate (2), fit the expanded probit model

PðYi 5 1jXi; Zi;CiÞ5Uðc1 dZi 1 eCi 1 fMiÞ ð3Þ

to the data, where

Mi 5Ci
/ða1 bXiÞ
Uða1 bXiÞ

2ð12CiÞ
/ða1 bXiÞ

12Uða1 bXiÞ
: ð4Þ

Here, U is the standard normal distribution function with density u 5 U#. In application,
a and b in (4) would be unknown. These parameters are replaced by maximum likelihood
estimates (MLEs) obtained from Step 1. The motivation for Mi is explained in Section 6
below. Identifiability is discussed in Section 7: according to Proposition 1, parameters are
identifiable unless b 5 d 5 0.

The operating characteristics of the two-step correction were determined in a simulation
study which draws 500 independent samples of size n 5 1000. Each sample was con-
structed as described above. We set a 5 0.50, b 5 1, and q 5 0.60. These choices create
an environment favorable to correction.
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Endogenous assignment

5 Implications for Practice

There are two main conclusions from the simulations and the analytic results.

1. Under ordinary circumstances, the two-step correction should not be used in probit
response models. In some cases, the correction will reduce bias, but in many other
cases, the correction will increase bias.

2. If the bivariate probit model is used, special care should be taken with the numerics.
Conventional likelihood maximization algorithms produce estimates that are far
away from the MLE. Even if the MLE has good operating characteristics, the
‘‘MLE’’ found by the software package may not. Results from VGAM 0.7-6 should
be treated with caution. Results from Stata 9.2 may be questionable for various com-
binations of parameters.

The models analyzed here are very simple, with one covariate in each of (1–2) and (5–6). In
real examples, the number of covariates may be quite large, and numerical behavior will be
correspondingly more problematic.

Of course, there is a question more salient than the numerics: what is it that justifies
probit models and the like as descriptions of behavior? For additional discussion, see
Freedman (2005), which has further cites to the literature on this point.

6 Motivating the Estimator

Consider (1–2). We can represent Vi as qUi 1
ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
Wi, where Wi is an N(0, 1) random

variable, independent of Ui. Then

E
n
Vi

"""Xi 5 x;Ci 5 1
o
5E

n
qUi 1

ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
Wi

"""Ui >2a2bxi
o

5 qEfUijUi >2a2bxig

5 q
1

Uða1 bxiÞ

Z N

2a2bxi

x/ðxÞdx

5 q
/ða1 bxiÞ
Uða1 bxiÞ

ð9Þ

because PfUi > 2 a 2 bxig 5 PfUi < a 1 bxig 5 U(a 1 bxi). Likewise,

E

#
Vi

""""Xi 5 x;Ci 5 0

$
52q

/ða1 bxiÞ
12Uða1 bxiÞ

: ð10Þ

In (2), therefore, EfVi 2 qMi j Xi, Cig 5 0. If (2) were a linear regression equation, then
OLS estimates would be unbiased, the coefficient ofMi being nearly q. (These remarks take
a and b as known, with the variance of the error term in the linear regression normalized to
1.) However, (2) is not a linear regression equation: (2) is a probit model. That is the source
of the problem.

7 Identifiability

Identifiability means that parameters are determined by the joint distribution of the observ-
ables; parameters that are not identifiable cannot be estimated. In the model defined by (1–
2), the parameters are a, b, c, d, e and the correlation q between the latents; the observables
are Xi, Zi, Ci, and Yi. In the model defined by (5–6), the parameters are a, b, c, d and the
correlation q between the latents; observables are Xi;Ci; Z̃i; Ỹi, where Z̃i 5 Zi and Ỹi 5 Yi
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Endogenous assignment
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Endogenous assignment

Endogeneity is moderately strong: q 5 0.60. So there should be some advantage to
removing endogeneity bias. The dummy variable Ci is 1 with probability about 0.64,
so it has appreciable variance. Furthermore, half the variance on the right hand side of
(1) can be explained: var(bXi) 5 var(Ui). The correlation between the regressors is only
0.40: making that correlation higher exposes the correction to well-known instabilities.

The sample is large: n5 1000. Regressors are exogenous by construction. Subjects are
independent and identically distributed. Somewhat arbitrarily, we set the true value of c in
the response equation (2) to 21, whereas d 5 0.75 and e 5 0.50. As it turned out, these
choices were favorable too.

Table 1 summarizes results for three kinds of estimates:

1. raw (ignoring endogeneity);

2. the two-step correction; and

3. full maximum likelihood.

For each kind of estimate and each parameter, the table reports the mean of the estimates
across the 500 repetitions. Subtracting the true value of the parameter measures the bias in
the estimator. Similarly, the standard deviation (SD) across the repetitions, also shown in
the table, measures the likely size of the random error.

The ‘‘raw estimates’’ in Table 1 are obtained by fitting the probit model

PðYi 5 1jXi; Zi;CiÞ5Uðc1 dZi 1 eCiÞ

to the data, simply ignoring endogeneity. Bias is quite noticeable.
The two-step estimates are obtained via (3–4), with â and b̂ obtained by fitting (1). We

focus on d and e, as the parameters in equation (2) that may be given causal interpretations.
Without correction, d̂ averages about 0.72, with correction 0.83 (see Table 1). Correction
doubles the bias. Without correction, ê averages 1.33, with correction 0.54. Correction
helps a great deal, but some bias remains.

With the two-step correction, the SD of ê is about 0.21. Thus, random error in the es-
timates is appreciable, even with n 5 1000. On the other hand, the standard error (SE)

Table 1 Simulation results

c d e q

True values
21.0000 0.7500 0.5000 0.6000

Raw estimates
Mean 21.5901 0.7234 1.3285
SD 0.1184 0.0587 0.1276

Two-step
Mean 21.1118 0.8265 0.5432
SD 0.1581 0.0622 0.2081

MLE
Mean 20.9964 0.7542 0.4964 0.6025
SD 0.161 0.0546 0.1899 0.0900

Notes. Correcting endogeneity bias when the response is binary probit. There are 500 repetitions. The sample size
is 1000. The correlation between latents is q 5 0.60. The parameters in the selection equation (1) are set at a 5
0.50 and b5 1. The parameters in the response equation (2) are set at c5 –1, d5 0.75, and e5 0.50. The response
equation includes the endogenous dummy Ci defined by (1). The correlation between the exogenous regressors is
0.40. MLE computed by VGAM 0.7-6.
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Endogenous assignment

across the 500 repetitions is 0:21
! ffiffiffiffiffiffiffiffi

500
p

5 0:01. The bias in ê cannot be explained in terms
of random error in the simulation: increasing the number of repetitions will not make any
appreciable change in the estimated biases.

Heckman (1978) also suggested the possibility of fitting the full model—equations (1)
and (2)—by maximum likelihood. The full model is a ‘‘bivariate probit’’ or ‘‘biprobit’’
model. Results are shown in the last two lines of Table 1. The MLE is essentially unbiased.
The MLE is better than the two-step correction, although random error remains a concern.

We turn to some variations on the setup described in Table 1. The simulations reported
there generated new versions of the regressors on each repetition. Freezing the regressors
makes almost no difference in the results: SDs would be smaller in the third decimal place.

The results in Table 1 depend on q, the correlation between the latent variables in the
selection equation and the response equation. If q is increased from 0.60 to 0.80, say,
the performance of the two-step correction is substantially degraded. Likewise, increasing
the correlation between the exogenous regressors degrades the performance.

When q 5 0.80 and the correlation between the regressors is 0.60, the bias in the two-
step correction (3–4) for d̂ is about 0.15; for ê, about 0.20. Figure 1 plots the bias in ê
against q, with the correlation between regressors set at 0.40 or 0.60, other parameters
being fixed at their values for Table 1. The wiggles in the graph reflect variance in the
Monte Carlo (there are ‘‘only’’ 500 replicates). The MLE is less sensitive to increasing
correlations (data not shown).

Results are also sensitive to the distribution of the exogenous regressors. As the variance
in the regressors goes down, bias goes up—in the two-step estimates and in the MLE.
Furthermore, numerical issues become acute. There is some explanation: dividing the
SD of X by 10, say, is equivalent to dividing b by 10 in equation (1); similarly for Z
and d in equation (2). For small values of b and d, parameters are barely identifiable.

Figure 2 plots the bias in ê against the common SD of X and Z, which is set to values
ranging from 0.1 to 1.0 (other parameters are set as in Table 1). The light line represents the
MLE. Some of the ‘‘bias’’ in the MLE is indeed small-sample bias—when the SD is 0.1,
a sample with n5 1000 is a small sample. Some of the bias, however, reflects a tendency of
likelihood maximizers to quit before finding the global maximum.
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Fig. 1 The two-step correction. Graph of bias in ê against q, the correlation between the latents. The
light lower line sets the correlation between regressors to 0.40, and the heavy upper line sets the
correlation to 0.60. Other parameters as for Table 1. Below 0.35, the lines crisscross.

141Endogeneity in Probit Response Models

 by guest on A
pril 18, 2013

http://pan.oxfordjournals.org/
D

ow
nloaded from

 

Jonathan Wand (Stanford University) Statistical Methods III: Spring 2013
Choice models with endogeneity 12 /

14



Endogenous selection

Equation (6) is the equation of primary interest; however, Yi and Zi are observed only when
Ci 5 1. Thus, the data are the observed values of (Xi, Ci) for all i, as well as (Zi, Yi) when
Ci 5 1. When Ci 5 0, however, Zi and Yi remain unobserved. Notice that Yi is binary rather
than continuous. Notice too that Ci is omitted from (6); indeed, when (6) can be observed,
Ci [ 1.

Fitting (6) to the observed data raises the question of endogeneity bias. Sample subjects
have relatively high values of Ui; hence, high values of Vi. (This assumes q > 0.) Again,
there is a proposed solution that involves two steps.

Step 1. Estimate the probit model (5) by likelihood techniques.

Step 2. Fit the expanded probit model

PðYi 5 1jXi; ZiÞ5Uðc1 dZi 1 fMiÞ ð7Þ

to the data on subjects i with Ci 5 1. This time,

Mi 5
/ða1 bXiÞ
Uða1 bXiÞ

: ð8Þ

Parameters in (8) are replaced by the estimates from Step 1. As before, this two-step cor-
rection doubles the bias in d̂ (see Table 2). TheMLE removes most of the bias. However, as
for Table 1, the bias in the MLE depends on the SD of the regressors. Bias will be notice-
able if the SDs are below 0.2. Some of this is small-sample bias in the MLE, and some
reflects difficulties in numerical maximization.

Increasing the sample size from 1000 to 5000 in the simulations barely changes the
averages, but reduces the SDs by a factor of about

ffiffiffi
5

p
, as might be expected. This comment

applies both to Tables 1 and 2 (data not shown), but not to the MLE results in Table 2.
Increasing n would have made the STATA code prohibitively slow to run.

Table 2 Simulation results

c d q

True values
21.0000 0.7500 0.6000

Raw estimates
Mean 20.7936 0.7299
SD 0.0620 0.0681

Two-step
Mean 21.0751 0.8160
SD 0.1151 0.0766

MLE
Mean 20.9997 0.7518 0.5946
SD 0.0757 0.0658 0.1590

Notes. Correcting endogeneity bias in sample selection when the response is binary probit. There are 500
repetitions. The sample size is 1000. The correlation between latents is q5 0.60. The parameters in the selection
equation (5) are set at a5 0.50 and b5 1. The parameters in the response equation (6) are set at c521, and d5
0.75. Response data are observed only when Ci 5 1, as determined by the selection equation. This will occur for
about 64% of the subjects. The correlation between the exogenous regressors is 0.40. MLE computed using
Stata 9.2.
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Endogenous selection
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