Statistical Methods III: Spring 2013

Jonathan Wand

Stanford University

Choice + Inference

Outline

Get-out-the-Vote Messages (GOTV)

Question: Is it possible to increase the likelihood of an individuals turnout by making an appeal to vote?

Features of observational studies

- Contact may be correlated with outcome
 - Candidates may be more likely to target individuals who they think will turnout
 - Politically active individuals may be more likely to be in contact with a candidate and also more likely to value voting
- Difficult to measure the quality/quantity of contact and mobilization.
 - Often rely on self-reports/memory recall of citizens
 - More effective contacts will be remembered

Get-out-the-Vote Messages (GOTV)

Question: Is it possible to increase the likelihood of an individuals turnout by making an appeal to vote?

Features of experiment

- control who is assigned to "treatment" or not
- control quality/quantity of "treatments"

Gerber and Green (1998) field experiment sample of households with one or two individuals registered to vote:

- random assignment to zero, one, or more types of treatments:
 - in-person contact
 - telephone call
 - direct mail
- random assignment to appeal
 - civic duty
 - close election
 - neighborhood solidarity

GOTV design

Design for in-person contact:

Group	Number of people
Treatment	5,800
Control	23,500

$D_i \in \{0,1\}$	<i>i</i> treated / contacted
$Y_i \in \{0, 1\}$	Outcome : Voted or not
$Y_i(1), Y_i(0)$	Potential outcome under contact or not

What we may want to learn, ATE $E[Y_i(1) - Y_i(0)]$.

• If $D_i \perp Y_i(0), Y_i(1)$ then $E[Y_i(1) - Y_i(0)] = E[Y_i(1)] - E[Y_i(0)]$

Get-out-the-Vote (GOTV)

From Gerber and Green (GG, 1998), "in-person" RCT:

Group	
Treatment assigned and received	
Treatment assigned not received	
Control group	1

N	Туре
---	------

- 1,600 compliers
- 4,200 non-compliers
- 23,500 compliers

In-person Contact rate: 28 percent

With non-compliance, we have a problem similar to observational study:

- those who receive treatment may not be random
- particular fear:

individuals who are are more likely to be contacted may also be more likely to vote

Angrist, Imbens, Rubins

AIR notation	Description
	Contact given assignment <i>Z</i> Voted given assignment and actuality
Potential Treatment	Description
$egin{array}{ll} D_i(Z_i=1)\ D_i(Z_i=0) \end{array}$	Assigned to treatment Assigned to control
Potential Outcome	Description
$Y_i(Z_i = 1, D_i = 1)$ $Y_i(Z_i = 1, D_i = 0)$ $Y_i(Z_i = 0, D_i = 1)$	Assigned to treatment, and treated Assigned to treatment, and <i>not</i> treated Assigned to control, and treated

 $Y_i(Z_i = 0, D_i = 0)$ Assigned to control, and *not* treated

Only going to see one outcome for an individual.

Difference in observed outcomes - randomized

What does simple randomization give us?

 $Y_i(0), Y_i(1) \perp D_i$

therefore,

$$E[Y_i(0) | D_i = 0] = E[Y_i(0) | D_i = 1] = E[Y_i(0)]$$

$$E[Y_i(1) | D_i = 0] = E[Y_i(1) | D_i = 1] = E[Y_i(1)]$$

Thus, no selection bias,

$$0 = E[Y_i(0) \mid D_i = 1] - E[Y_i(0) \mid D_i = 0]$$

and thus,

$$E[Y_i | D_i = 1] - E[Y_i | D_i = 0]$$

= $E[Y_i(1) - Y_i(0) | D_i = 1] + \{E[Y_i(0) | D_i = 1] - E[Y_i(0) | D_i = 0]\}$
= $E[Y_i(1) - Y_i(0) | D_i = 1]$
= $E[Y_i(1) - Y_i(0)]$

Non-compliance as an identification problem Without compliance ($D_i = Z_i$), potential confoundness,

$$Y_i(0), Y_i(1) \not\perp D_i$$

if so, then

$$E[Y_i(0) | D_i = 0] \neq E[Y_i(0) | D_i = 1] \neq E[Y_i(0)]$$

$$E[Y_i(1) | D_i = 0] \neq E[Y_i(1) | D_i = 1] \neq E[Y_i(1)]$$

Thus, potential selection bias,

$$0 \neq E[Y_i(0) \mid D_i = 1] - E[Y_i(0) \mid D_i = 0]$$

and thus,

$$E[Y_i | D_i = 1] - E[Y_i | D_i = 0]$$

$$\neq E[Y_i(1) - Y_i(0) | D_i = 1] + \{E[Y_i(0) | D_i = 1] - E[Y_i(0) | D_i = 0]\}$$

$$\neq E[Y_i(1) - Y_i(0) | D_i = 1]$$

$$\neq E[Y_i(1) - Y_i(0)]$$

Non-compliance, overcoming identification problems

Approaches to identification with non-compliance

- Bounds (cf, Manski)
- Parametric/structural (cf, Heckman)
- Redefine estimand of interest
 - Intention-to-treat (ITT) for outcome With

 $Z_i \perp (Y_i(0), Y_i(1), D_i(0), D_i(1))$

we can estimate

 $\mathsf{ITT} = E[Y_i(1, D_i(1)) - Y_i(0, D_i(0))] = E[Y_i \mid Z_i = 1] - E[Y_i \mid Z_i = 0]$

2 Could also estimate ITT for receiving treatment

 $\mathsf{ITT}_t = E[D_i(Z_i = 1) - D_i(Z_i = 0)] = E[D_i \mid Z_i = 1] - E[D_i \mid Z_i = 0]$

Socal Average Treatment Effect (LATE)

What do we need for LATE?

- IA refer to assignment indicator Z as an "instrument"
- interpretation hinges on properties holding..
 - instrument exists
 - 2 monotonicity holds
- Two contrast points from parametric model to think about
 - what parameter are we identifying?
 - 2 what assumptions do we need?

Condition 1 (Existence of Instruments)

(a) Joint independence

 $Z_i \perp (Y_i(0), Y_i(1), D_i(0), D_i(1))$

- adds another restriction to $D_I \perp Y_i(0), Y_i(1)$
- testable?
- (a') Exclusion, for all z, z', d',

$$Y_i(d) = Y_i(z, d) = Y_i(z', d)$$

- interpretation?
- cf. AIR has good discussion

(b) Non-trivial effect of assignment

$$E[D_i \mid Z_i = 1] \neq E[D_i \mid Z_i = 0]$$

testable?

Condition 2 (Monotonicity)

 $D_i(1) \geq D_i(0)$

If we had this equation:

 $D_i(z) = \mathbf{1}\{\gamma_0 + z_i\gamma_1 + \epsilon_i > 0\}$

what would we need to assume for monotonicity to hold?

Defining (non)compliance

	$D_i(0) = 0$	$D_i(0) = 1$
$D_i(1) = 0$	never-taker	defier
$D_i(1) = 1$	complier	always-taker

• if all compliers, then

 $D_i(Z_i)=Z_i$

• for all except for defiers, we have,

$$D_i(Z) \leq Z$$

• for Defiers,

$$D_i(Z) > Z$$

• Q: do we get observe which cell we are in? i.e., type?

$$\begin{array}{c|c} & Z_i = 0 & Z_i = 1 \\ \hline D_i = 0 & \text{complier/never-taker} & \text{never-taker/defier} \\ D_i = 1 & \text{always-taker/defier} & \text{complier/always-taker} \end{array}$$

- If $Z_i = 0$ and $D_i = 0$, then could be either complier OR never-taker
- If $Z_i = 0$ and $D_i = 1$, then could be either never-taker OR defier
- and so on...
- LATE needs absense of defiers

Conditional probabilities

	$Z_i = 0$	$Z_i = 1$
$D_i = 0$ $D_i = 1$	$\pi_c + \pi_0$	$\pi_0 + \pi_d$
$D_i = 1$	$\pi_1 + \pi_d$	$\pi_c + \pi_1$

- Each cell is $E(D_i = w | Z = z)$
- If no defiers, then proportion of each type is identifiable from this table of conditional probabilities

Conditional probabilities

	$Z_i = 0$	$Z_i = 1$
$D_i = 0$ $D_i = 1$	$\pi_c + \pi_0$	π ₀ +0
$D_i = 1$	$\pi_1 + 0$	$\pi_{c} + \pi_{1}$

• Each cell is $E(D_i = w | Z = z)$

 If no defiers, then proportion of each type is identifiable from this table of conditional probabilities,

Population parameters,

$$\pi_{1} = E(D_{i} | Z_{i} = 0) = P(always)$$

$$\pi_{0} = 1 - E(D_{i} | Z_{i} = 1) = P(never)$$

$$\pi_{c} = E(D_{i} | Z_{i} = 1) - E(D_{i} | Z_{i} = 0) = P(complier)$$

$$\pi_{d} = 0 = P(defier)$$

Refresher: Law of Total Probability

Can partition any single event into multiple disjoint events

 $E = (E \cap F) \cup (E \cap F^c).$

I.e., E can occur in two mutually exclusive ways:

$$P(E) = P((E \cap F) \cup (E \cap F^{c}))$$

= P(E \cap F) + P(E \cap F^{c}) (why?)
= P(E \cap F)P(F) + P(E \cap F^{c})P(F^{c}) (why?)

Definition (Law of Total Probability)

Given events $E, F \in \Omega$,

 $P(E) = P(E \mid F)P(F) + P(E \mid F^{c})P(F^{c}).$

Jonathan Wand (Stanford University)

Refresher: Iterated Expectations

Theorem (Law of iterated expectations)

If X and Y are any two random variables then

 $E_X X = E_Y \left[E_{X|Y}(X \mid Y) \right]$

Proof:

 $E_X X = \sum_x \sum_y x f(x, y)$

Imbens-Angrist Decompositions

Conditional expectation by types of respondents:

$$\begin{split} E[Y_i \mid Z_i = 1] &= E[Y_i \mid Z_i = 1, \text{complier}] \times P(\text{complier}) + \\ E[Y_i \mid Z_i = 1, \text{never}] \times P(\text{never}) + \\ E[Y_i \mid Z_i = 1, \text{always}] \times P(\text{always}) + \\ E[Y_i \mid Z_i = 1, \text{defier}] \times P(\text{defier}) \end{split} \\ &= E[Y_i(1) \mid \text{complier}] \times P(\text{complier}) + \\ E[Y_i(0) \mid \text{never}] \times P(\text{never}) + \\ E[Y_i(1) \mid \text{always}] \times P(\text{always}) + \\ E[Y_i(0) \mid \text{defier}] \times P(\text{defier}) \end{aligned}$$

$$\begin{split} &= E[Y_i(1) \mid \text{complier}] \times \pi_c + \\ E[Y_i(0) \mid \text{never}] \times \pi_0 + \\ E[Y_i(1) \mid \text{always}] \times \pi_1 \end{split}$$

Imbens-Angrist Decompositions

Conditional expectation by types of respondents:

$$\begin{split} E[Y_i \mid Z_i = 0] &= E[Y_i \mid Z_i = 0, \text{complier}] \times P(\text{complier}) + \\ E[Y_i \mid Z_i = 0, \text{never}] \times P(\text{never}) + \\ E[Y_i \mid Z_i = 0, \text{always}] \times P(\text{always}) + \\ E[Y_i \mid Z_i = 0, \text{defier}] \times P(\text{defier}) \end{split} \\ &= E[Y_i(0) \mid \text{complier}] \times P(\text{complier}) + \\ E[Y_i(0) \mid \text{never}] \times P(\text{never}) + \\ E[Y_i(1) \mid \text{always}] \times P(\text{always}) + \\ E[Y_i(1) \mid \text{defier}] \times P(\text{defier}) \end{aligned}$$

$$\begin{split} &= E[Y_i(0) \mid \text{complier}] \times \pi_c + \\ E[Y_i(0) \mid \text{never}] \times \pi_0 + \\ E[Y_i(1) \mid \text{always}] \times \pi_1 \end{split}$$

So, given these representations of population values,

$$E[Y_i | Z_i = 1] = E[Y_i(1) | \text{ complier}]\pi_c + E[Y_i(0) | \text{ never }]\pi_0 + E[Y_i(1) | \text{ always }]\pi_1$$
$$E[Y_i | Z_i = 0] = E[Y_i(0) | \text{ complier}]\pi_c + E[Y_i(0) | \text{ never }]\pi_0 + E[Y_i(1) | \text{ always }]\pi_1$$

We can solve for the difference

$$E[Y_i | Z_i = 1] - E[Y_i | Z_i = 0]$$

 $= E[Y_i(1) \mid \text{complier}]\pi_c - E[Y_i(0) \mid \text{complier}]\pi_c$

 $= E[Y_i(1) - Y_i(0) \mid \text{complier}]\pi_c$

Given difference

$$E[Y_i | Z_i = 1] - E[Y_i | Z_i = 0]$$

= $E[Y_i(1) | \text{complier}]\pi_c - E[Y_i(0) | \text{complier}]\pi_c$
= $E[Y_i(1) - Y_i(0) | \text{complier}]\pi_c$

We can solve for,

$$E[Y_i(1) - Y_i(0) | \text{ complier}] = \frac{E[Y_i | Z_i = 1] - E[Y_i | Z_i = 0]}{\pi_c}$$

Can we estimate π_c ?

Yes, it is ITT for receiving treatment.

$$E[Y_i(1) - Y_i(0) | \text{ complier}] = \frac{E[Y_i | Z_i = 1] - E[Y_i | Z_i = 0]}{E[D_i | Z_i = 1] - E[D_i | Z_i = 0]}$$

LATE applied to GOTV

Vote Percent for Treatment: 47.2%; for Control: 44.8% Percent Contacted of Assigned Treatment: 27.9%

Local Average Treatment Effect

$$E\Big[Y_i(1) - Y_i(0) \mid D_i(1) - D_i(0) = 1\Big] = \frac{E\Big[Y_i(1, D_i(1)) - Y_i(0, D_i(0))\Big]}{E\Big[D_i(1) - D_i(0)\Big]}$$

$$= \frac{\text{ITT Vote}}{\text{ITT Contact}}$$

$$=\frac{.472-.448}{.279}=.087$$

Questions to think about,

- instruments easy with randomized assignment; do you believe them in obs research?
- without control of experiment, is monotonicity plausible?
- how do assumptions differ from parametric model?
- what is weird about LATE?
- how does value depend on instrument?