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Outline

1 Choice model with discrete endogenous variables: LATE
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Get-out-the-Vote Messages (GOTV)

Question: Is it possible to increase the likelihood of an individuals
turnout by making an appeal to vote?

Features of observational studies
Contact may be correlated with outcome

I Candidates may be more likely to target individuals who they think
will turnout

I Politically active individuals may be more likely to be in contact with
a candidate and also more likely to value voting

Difficult to measure the quality/quantity of contact and
mobilization.

I Often rely on self-reports/memory recall of citizens
I More effective contacts will be remembered
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Get-out-the-Vote Messages (GOTV)
Question: Is it possible to increase the likelihood of an individuals
turnout by making an appeal to vote?

Features of experiment
control who is assigned to “treatment” or not
control quality/quantity of “treatments”

Gerber and Green (1998) field experiment sample of households with
one or two individuals registered to vote:

random assignment to zero, one, or more types of treatments:
I in-person contact
I telephone call
I direct mail

random assignment to appeal
I civic duty
I close election
I neighborhood solidarity
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GOTV design

Design for in-person contact:

Group Number of people

Treatment 5,800
Control 23,500

Variable Description

Di ∈ {0,1} i treated / contacted
Yi ∈ {0,1} Outcome : Voted or not
Yi(1), Yi(0) Potential outcome under contact or not

What we may want to learn, ATE E [Yi(1)− Yi(0)].

If Di ⊥⊥ Yi(0),Yi(1) then E [Yi(1)− Yi(0)] = E [Yi(1)]− E [Yi(0)]
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Get-out-the-Vote (GOTV)

From Gerber and Green (GG, 1998), “in-person” RCT:

Group N Type

Treatment assigned and received 1,600 compliers
Treatment assigned not received 4,200 non-compliers
Control group 23,500 compliers

In-person Contact rate: 28 percent

With non-compliance, we have a problem similar to observational
study:

those who receive treatment may not be random
particular fear:
individuals who are are more likely to be contacted may also be
more likely to vote
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Angrist, Imbens, Rubins
AIR notation Description

Di(Z ) ∈ {0,1} Contact given assignment Z
Yi(Z ,D) ∈ {0,1} Voted given assignment and actuality

Potential Treatment Description

Di(Zi = 1) Assigned to treatment
Di(Zi = 0) Assigned to control

Potential Outcome Description

Yi(Zi = 1,Di = 1) Assigned to treatment, and treated
Yi(Zi = 1,Di = 0) Assigned to treatment, and not treated
Yi(Zi = 0,Di = 1) Assigned to control, and treated
Yi(Zi = 0,Di = 0) Assigned to control, and not treated

Only going to see one outcome for an individual.
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Difference in observed outcomes - randomized
What does simple randomization give us?

Yi(0),Yi(1) ⊥⊥ Di

therefore,

E [Yi(0) | Di = 0] = E [Yi(0) | Di = 1] = E [Yi(0)]

E [Yi(1) | Di = 0] = E [Yi(1) | Di = 1] = E [Yi(1)]

Thus, no selection bias,

0 = E [Yi(0) | Di = 1]− E [Yi(0) | Di = 0]

and thus,

E [Yi | Di = 1]− E [Yi | Di = 0]

= E [Yi(1)− Yi(0) | Di = 1] + {E [Yi(0) | Di = 1]− E [Yi(0) | Di = 0]}

= E [Yi(1)− Yi(0) | Di = 1]

= E [Yi(1)− Yi(0)]
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Non-compliance as an identification problem
Without compliance (Di = Zi ), potential confoundness,

Yi(0),Yi(1) 6⊥⊥ Di

if so, then

E [Yi(0) | Di = 0] 6= E [Yi(0) | Di = 1] 6= E [Yi(0)]

E [Yi(1) | Di = 0] 6= E [Yi(1) | Di = 1] 6= E [Yi(1)]

Thus, potential selection bias,

0 6= E [Yi(0) | Di = 1]− E [Yi(0) | Di = 0]

and thus,

E [Yi | Di = 1]− E [Yi | Di = 0]

6= E [Yi(1)− Yi(0) | Di = 1] + {E [Yi(0) | Di = 1]− E [Yi(0) | Di = 0]}

6= E [Yi(1)− Yi(0) | Di = 1]

6= E [Yi(1)− Yi(0)]
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Non-compliance, overcoming identification problems
Approaches to identification with non-compliance

1 Bounds (cf, Manski)
2 Parametric/structural (cf, Heckman)
3 Redefine estimand of interest

1 Intention-to-treat (ITT) for outcome
With

Zi ⊥⊥ (Yi (0),Yi (1),Di (0),Di (1))

we can estimate

ITT = E [Yi (1,Di (1))−Yi (0,Di (0))] = E [Yi | Zi = 1]−E [Yi | Zi = 0]

2 Could also estimate ITT for receiving treatment

ITTt = E [Di (Zi = 1)−Di (Zi = 0)] = E [Di | Zi = 1]−E [Di | Zi = 0]

3 Local Average Treatment Effect (LATE)
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What do we need for LATE?

IA refer to assignment indicator Z as an “instrument”
interpretation hinges on properties holding..

1 instrument exists
2 monotonicity holds

Two contrast points from parametric model to think about
1 what parameter are we identifying?
2 what assumptions do we need?
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LATE
Condition 1 (Existence of Instruments)

(a) Joint independence

Zi ⊥⊥ (Yi(0),Yi(1),Di(0),Di(1))

I adds another restriction to DI ⊥⊥ Yi (0),Yi (1)
I testable?

(a’) Exclusion, for all z, z ′,d ′,

Yi(d) = Yi(z,d) = Yi(z ′,d)

I interpretation?
I cf. AIR has good discussion

(b) Non-trivial effect of assignment

E [Di | Zi = 1] 6= E [Di | Zi = 0]

I testable?
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LATE

Condition 2 (Monotonicity)

Di(1) ≥ Di(0)

If we had this equation:

Di(z) = 1{γ0 + ziγ1 + εi > 0}

what would we need to assume for monotonicity to hold?
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Defining (non)compliance

Di(0) =0 Di(0) =1
Di(1) =0 never-taker defier
Di(1) =1 complier always-taker

if all compliers, then

Di(Zi) = Zi

for all except for defiers, we have,

Di(Z ) ≤ Z

for Defiers,

Di(Z ) > Z

Q: do we get observe which cell we are in? i.e., type?
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LATE

Zi =0 Zi =1
Di =0 complier/never-taker never-taker/defier
Di =1 always-taker/defier complier/always-taker

If Zi = 0 and Di = 0, then could be either complier OR never-taker
If Zi = 0 and Di = 1, then could be either never-taker OR defier
and so on...
LATE needs absense of defiers

Jonathan Wand (Stanford University) Statistical Methods III: Spring 2013 Choice + Inference 16 / 26



Conditional probabilities

Zi =0 Zi =1
Di =0 πc + π0 π0 + πd
Di =1 π1 + πd πc + π1

Each cell is E(Di = w | Z = z)

If no defiers, then proportion of each type is identifiable from this
table of conditional probabilities
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Conditional probabilities
Zi =0 Zi =1

Di =0 πc + π0 π0 +0
Di =1 π1 + 0 πc + π1

Each cell is E(Di = w | Z = z)

If no defiers, then proportion of each type is identifiable from this
table of conditional probabilities,

Population parameters,

π1 = E(Di | Zi = 0) = P(always)

π0 = 1− E(Di | Zi = 1) = P(never)

πc = E(Di | Zi = 1)− E(Di | Zi = 0) = P(complier)

πd = 0 = P(defier)
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Refresher: Law of Total Probability

Can partition any single event into multiple disjoint events

E = (E ∩ F ) ∪ (E ∩ F c).

I.e., E can occur in two mutually exclusive ways:

P(E) = P(
(
E ∩ F ) ∪ (E ∩ F c)

)
= P( E ∩ F ) + P(E ∩ F c) (why?)
= P(E | F )P(F ) + P(E | F c)P(F c) (why?)

Definition (Law of Total Probability)
Given events E ,F ∈ Ω,

P(E) = P(E | F )P(F ) + P(E | F c)P(F c).
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Refresher: Iterated Expectations
Theorem (Law of iterated expectations)
If X and Y are any two random variables then

EX X = EY
[

EX |Y (X | Y )
]

Proof:

EX X =
∑

x

∑
y

x f (x , y)

=
∑

x

∑
y

x f (x | y) f (y)

=
∑

y

[∑
x

x f (x | y)

]
f (y)

=
∑

y

[
EX |Y (X | Y )

]
f (y)

= EY
[

EX |Y (X | Y )
]
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Imbens-Angrist Decompositions

Conditional expectation by types of respondents:

E [Yi | Zi = 1] = E [Yi | Zi = 1, complier] × P(complier) +
E [Yi | Zi = 1,never ] × P(never ) +
E [Yi | Zi = 1,always ] × P(always ) +
E [Yi | Zi = 1,defier ] × P(defier)

= E [Yi(1) | complier] × P(complier) +
E [Yi(0) | never ] × P(never ) +
E [Yi(1) | always ] × P(always ) +
E [Yi(0) | defier ] × P(defier)

= E [Yi(1) | complier] × πc +
E [Yi(0) | never ] × π0 +
E [Yi(1) | always ] × π1
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Imbens-Angrist Decompositions

Conditional expectation by types of respondents:

E [Yi | Zi = 0] = E [Yi | Zi = 0, complier] × P(complier) +
E [Yi | Zi = 0,never ] × P(never ) +
E [Yi | Zi = 0,always ] × P(always ) +
E [Yi | Zi = 0,defier ] × P(defier)

= E [Yi(0) | complier] × P(complier) +
E [Yi(0) | never ] × P(never ) +
E [Yi(1) | always ] × P(always ) +
E [Yi(1) | defier ] × P(defier)

= E [Yi(0) | complier] × πc +
E [Yi(0) | never ] × π0 +
E [Yi(1) | always ] × π1
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LATE

So, given these representations of population values,

E [Yi | Zi = 1]
= E [Yi(1) | complier]πc + E [Yi(0) | never ]π0 + E [Yi(1) | always ]π1

E [Yi | Zi = 0]
= E [Yi(0) | complier]πc + E [Yi(0) | never ]π0 + E [Yi(1) | always ]π1

We can solve for the difference

E [Yi | Zi = 1]− E [Yi | Zi = 0]

= E [Yi(1) | complier]πc − E [Yi(0) | complier]πc

= E [Yi(1)− Yi(0) | complier]πc
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LATE
Given difference

E [Yi | Zi = 1]− E [Yi | Zi = 0]

= E [Yi(1) | complier]πc − E [Yi(0) | complier]πc

= E [Yi(1)− Yi(0) | complier]πc

We can solve for,

E [Yi(1)− Yi(0) | complier] =
E [Yi | Zi = 1]− E [Yi | Zi = 0]

πc

Can we estimate πc?

Yes, it is ITT for receiving treatment.

E [Yi(1)− Yi(0) | complier] =
E [Yi | Zi = 1]− E [Yi | Zi = 0]
E [Di | Zi = 1]− E [Di | Zi = 0]
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LATE applied to GOTV

Vote Percent for Treatment: 47.2%; for Control: 44.8%
Percent Contacted of Assigned Treatment: 27.9%

Local Average Treatment Effect

E
[
Yi(1)− Yi(0) | Di(1)− Di(0) = 1

]
=

E
[
Yi
(
1,Di(1)

)
− Yi

(
0,Di(0)

)]
E
[
Di(1)− Di(0)

]
= ITT Vote

ITT Contact

= .472− .448
.279 = .087
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LATE

Questions to think about,
instruments easy with randomized assignment; do you believe
them in obs research?
without control of experiment, is monotonicity plausible?
how do assumptions differ from parametric model?
what is weird about LATE?
how does value depend on instrument?
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