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Hypothesis tests of r=Rank(R) restrictions
Equality restriction versus unconstrained

H0 : Rθ = 0 versus HA : Rθ 6= 0

Equality restrictions versus inequality restriction

H0 : Rθ = 0 versus H ′A : Rθ ≥ 0

Inequality restricted vs unconstrained

H ′A : Rθ ≥ 0 versus H ′B : Rθ � 0.

Inequality restricted versus additional inequalities

H ′A : RAθ ≥ 0 versus H ′B : RBθ ≥ 0, RA ⊂ RB
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Hypothesis tests of r=Rank(R) restrictions
Fixed difference in dimensionality of models

I Equality restriction versus unconstrained

Pr(−2[L(θ̃)− L(θ̂)] > c) = Pr(χ2
r > c)

Difference in number of free parms is stochastic
I Equality restrictions versus inequality restriction
I Inequality restricted vs unconstrained
I Inequality restricted versus additional inequalities

Pr(−2[L(θ̃)− L(θ̂)] > c) = Pr(χ̄2 > c)

=
K∑

k=1

wkPr(χ2
k > c)

where wk is the probability of having a difference of k degrees of
freedom between models
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Inference on a convex cone
Let

∆̂ = (∆̂1, ∆̂2) ∼ N(∆, I2)

where, possibly,

∆̂j = µ̂j − µ̂j−1 j ∈ {1,2}

and Ik is a k × k identity matrix.

Hypotheses/comparisons
H0 : ∆ = 0 vs H60 : ∆ 6= 0
H0 : ∆ = 0 vs H↗ : ∆ ≥ 0
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For example
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I will call this case “B”, with notation µ̂B = (µ̂0B, µ̂1B, µ̂2B) and
∆̂B = (∆̂1B, ∆̂2B).
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Distance between (0,0) and ∆̂
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Critical set H0 : ∆j = 0 vs H60 : ∆j 6= 0
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Revisiting example B, imposing H↗ (monotonicity)
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Red: unconstrained values changed to achieve monotonicity
Black dots are consistent with monotonic
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Distance between ∆̂, ∆̃ ≥ 0, and (0,0)

−4 −2 0 2 4

−
4

−
2

0
2

4
S1

S4S3

S2

∆2

∆1

●∆̂A

●∆̂B

●∆̂C

∆~A

●
∆~B

●
∆~C

●∆~D

∆̃A ∼ 0 ∆̃B, ∆̃C ∼ χ2
1 ∆̃D ∼ χ2

2

Jonathan Wand (Stanford University) Statistical Methods III: Spring 2013 means + ineqalities + splines 11 / 39



Critical set of H0 vs H↗
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Constrained estimation: dimensions and distance
Constrained estimates ∆̃, subject to ∆ > 0

∆̃ =


(∆̂1, ∆̂2) if ∆̂1 ≥ 0 and ∆̂2 ≥ 0
(∆̂1,0) if ∆̂1 ≥ 0 and ∆̂2 < 0
(0, ∆̂2) if ∆̂1 < 0 and ∆̂2 ≥ 0
(0,0) if ∆̂1 < 0 and ∆̂2 < 0

How many free parameters? 2 (S1), 1 (S2, S4), or 0 (S3).
What is probability of being “far” from H0? By quadrant:

P(∆̃2
1 + ∆̃2

2 < c′ | ∆̂ ∈ S1) = P(χ2
2 < c′)

P(∆̃2
1 + 0 < c′ | ∆̂ ∈ S2) = P(χ2

1 < c′)

P(0 + ∆̃2
2 < c′ | ∆̂ ∈ S4) = P(χ2

1 < c′)

P(0 + 0 < c′ | ∆̂ ∈ S3) = 1
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Constrained estimation: dimensions and distance
In this simple example, each of quadrants is equally likely under H0

P(∆̃2
1 + ∆̃2

2 < c′ | ∆̂ ∈ S1) = P(χ2
2 < c′)

P(∆̃2
1 + 0 < c′ | ∆̂ ∈ S2) = P(χ2

1 < c′)

P(0 + ∆̃2
2 < c′ | ∆̂ ∈ S4) = P(χ2

1 < c′)

P(0 + 0 < c′ | ∆̂ ∈ S3) = 1

So for given α, solve for c′

P(χ̄2 < c′) = 1/4P(χ2
2 < c′) + 1/2P(χ2

1 < c′) + 1/4 = 1− α
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Distribution of hypothesis tests
Equality restriction versus unconstrained

I Fixed difference in dimensionality of models

Pr(−2[L(θ̃)− L(θ̂)] > c) = Pr(χ2
r > c)

But number of free − restricted parms is stochastic if
I Equality restrictions versus inequality restriction
I Inequality restricted vs unconstrained
I Inequality restricted versus additional inequalities

Pr(−2[L(θ̃)− L(θ̂)] > c′) = Pr(χ̄2 > c′)

=
K∑

k=1

wkPr(χ2
k > c′)

where wk is the probability of having a difference of k degrees of
freedom between models
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Distribution of hypothesis tests
For equality-based hypo., choose test size α, solve for c,

Pr(χ2
r > c) = α

For convex hypo., choose size α and solve for c′,

K∑
k=1

wkPr(χ2
k > c′) = α

For any α, if wk < 1 then c′ < c
Can use c as an upper bound (cf. Wand 2010)
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Overlap of sets: H0 vs H60 and H0 vs H↗

−4 −2 0 2 4

−
4

−
2

0
2

4
S1

S4S3

S2

∆2

∆1

●∆̂A

●∆̂B

●∆̂C

●
∆̂D

√
χ2

2,α = radius60 = 2.45 vs
√
χ̄2
+,α = radius↗ = 2.05

Jonathan Wand (Stanford University) Statistical Methods III: Spring 2013 means + ineqalities + splines 17 / 39



Outline

1 Testing inequality constraints

2 Basis function

3 B-splines

4 Example

5 Comments

Jonathan Wand (Stanford University) Statistical Methods III: Spring 2013 means + ineqalities + splines 18 / 39



functions of x
Let’s think about aproximating E(y |x) = f (x) by

f (x) =
M∑

m=0

βmhm(x)

Quadratic regression

h0(x) = 1; h1(x) = x ; h2(x) = x2

f (x) = β0 + β1x + β2x2

Broken stick

h0(x) = 1; h1(x) = x ; h2(x) = (x − .5)+

f (x) = β0 + β1x + β2(x − .5)+

Sequence of means

hm(x) = I(Lm ≤ x < Um)

f (x) = β0h0 + β1h1(x) + ...+ βmhm(x)
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functions of x
A whip like model,

h0(x) = 1
h1(x) = x
h2(x) = (x − .5)+

h3(x) = (x − .55)+

...

hm(x) = (x − .95)+

this is a particular case of linear spline basis function
piecewise linear
“knot” locations:

λ = (.5, .55, ..., .95)

Q: what does adding knots do to property of curve?
Q: how do we pick knots?
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functions of x
Q: what is the derivative of a function of linear basis at a knot?
Q: How might we get smoothness?

h0(x) = 1
h1(x) = x

h1(x) = x2

h2(x) = (x − λ1)2
+

...

hm(x) = (x − λK )2
+

quadratic spline
f has continuous first derivative at all points
more generally, a tructated power basis of dgree p

(x − λk )p
+

has continuous p − 1 derivatives
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Basis splines

Logic:
map xi → hm(xi) (xi into M basis functions)
estimate f (x) (curve, a weighted sum of hm(x)):

f̂ (xi) =
M∑

m=1

β̂mhm(xi) = βh(xi)

where β̂ =
[
β̂1, β̂2, . . . , β̂m

]
are simply regression coefficients.

Features of B-splines
shapes can be described by linear functions of β
hm(x) has local support, βm has local effect
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Basis splines, basic logic

Given a choice of knot locations {λ1, ..., λM} and polynomial order
k
Decompose xi into M + 2 basis functions, with mth

hm,k+1(x) = (λm+k+1 − λi)
k+1∑
j=0

(λm+j − x)k
+∏k+1

l=0,l 6=j(λm+j − λm+l)

for a vector of spline coefficients,

β̂ =
[
β̂1, β̂2, . . . , β̂m

]
f (x) is a weighted sum of hm(x)

f̂ (xi) =
M∑

m=1

β̂mhm(xi)
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A look at h(x) of order 1, knots at 1/3 and 2/3
Basis function 1
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Mapping x (horizontal axis) to f (x) (vertical axis)

x
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1 (a) θ = [ 0, .33, .66, 1]

∆θ = [ .33, .33, .33]

(b) θ = [ 0, .1, .4, 1]

∆θ = [ 1, .3, .6]

(c) θ = [ 0, .5, .4, 1]

∆θ = [ .5, −.1, .6]
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Linear constraints implying shapes
Restriction f (x) Interval

1) βm − βm−1 > 0 increasing (km−1, km)

2) βm − βm−1 = 0 flat (km−1, km)

3) βm − βm−1 < 0 decreasing (km−1, km)

4)
βm+1 − βm

km+1 − km
=
βm − βm−1

km − km−1
linear (km−1, km+1)

5)
βm+1 − βm

km+1 − km
>
βm − βm−1

km − km−1
convex (km−1, km+1)

6)
βm+1 − βm

km+1 − km
<
βm − βm−1

km − km−1
concave (km−1, km+1)

and can combine, e.g., monotonic and convex; unimodal
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Linear constraints implying B-spline shapes
Linear restrictions on parameters, can be written as,

Rβ − c ≥ 0

Example 1: monotonicity (βm − βm−1 > 0)

Rm =

 −1 1 0 0
0 −1 1 0
0 0 −1 1

 , β =


β1
β2
β3
β4

 , c =

 0
0
0


Example 2: symmetric

Rm =

[
1 0 0 −1
0 1 −1 0

]
, β =


β1
β2
β3
β4

 , c =

[
0
0

]
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Estimation of spline coefficients
Unconstrained shape, f (x) is linear function of β

min
N∑
i

(yi − h(xi)β̂)2

Constrained OLS: quadratic programing problem

min
N∑
i

(yi − h(xi)β̃)2 subject to Rβ̃ − c ≥ 0

Constrained, non-linear/ML: logarithmic barrier

N∑
i

L(h(xi)β̃)− µ
∑

log(Rβ̃ − c)
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Motivations of PACs (Wand 2011)
Probability of Dem. victory by share of Dem. contributions
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Open seats 1980–1986, unrestricted B-spline

Proportion of Contributions to Dem
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PAC motives: model comparisons

Pr(χ̄2 > c)

Parms Log-lik. j vs j vs j vs
Model (j): m max Lj Linear Dips Mono.

Linear Equality 0 −47.03
w/ symmetric dips 1 −46.59 0.18

Symmetric, monotonic 2 −44.44 0.06 0.03
w/ knots at ( 1

3 ,
2
3 ) 3 −43.81 0.07 0.04 0.48

Unrestricted 6 −42.92 0.22 0.89 0.34
w/ knots at ( 1

3 ,
2
3 ) 8 −42.46 0.99 0.89 0.34

Note: χ̄2 = −2(Lrow − Lcolumn)
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Concluding comments
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Beyond average differences
... and arbitrary flexibleness

Have a theory, ideally more than one
“Make your theories elaborate” (Fisher / Cochran 1965):

I when constructing a causal hypothesis one should envisage as
many different consequences of its truth as possible

I if a hypothesis predicts that y will increase steadily as the causal
variable z increases, a study with at least three levels of z gives a
more comprehensive check than one with two levels

I i.e, check shape! not just average change

And check against omnibus alternatives
but be clear this is for idea generation and robustness!
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GLM extensions
Simple extension, back-fitting

Bachetti (1989) Additive Isotonic Models
Geyer, Charles J. (1991) Constrained Maximum Likelihood in
Logistic

However, do you want to...
non-linear transformation of link often unappealing, distorts shape!
Wand (2011) uses (constrained) spline to fit binary choice

Multivariate shapes
rather than additive (cf Stout 2011)
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Testing theories based on shapes
Design: no less important here than in RCM

case selection

minimizing confounders

Eg., theories of campaign finance and “open seat” races

selection of a test / distance-metric

identifying unique and invariant implications from theory

E.g., agenda theories hinge on status quo locations of (potential)
proposals

sensitivity analysis: bounds from theory and data

E.g., what (implausible) distribution of SQ could make agenda
theories observationally equivalent
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