Statistical Methods III: Spring 2013

Jonathan Wand

Stanford University

 $QP +$ constrained inference

Outline

OLS

Scalar notation

$$
\argmin_{\beta} \sum_{j} (y_i - x^{\top} \beta)^2
$$

Matrix notation

$$
\argmin_{\beta} (Y - X\beta)^{\top} (Y - X\beta)
$$

Matrix notation expansion

$$
\argmin_{\beta} \beta^{\top} X^{\top} X \beta - 2 Y^{\top} X \beta + Y^{\top} Y
$$

• No constraints on β

Reviewing (and rewriting) OLS

Matrix notation expansion

$$
\argmin_{\beta} \beta^{\top} X^{\top} X \beta - 2 Y^{\top} X \beta + Y^{\top} Y
$$

multiply by 1/2, and drop *YY* (why allowed?)

$$
\arg\min_{\beta} \frac{1}{2}\beta^{\top} X^{\top} X \beta - Y^{\top} X \beta
$$

If we write in form of,

$$
\argmin_{\beta} \bm{d}^{\top}\beta + \frac{1}{2}\beta \bm{W}\beta
$$

then

\n- $$
W = X^\top X
$$
. What is W^{-1} ?
\n- $d = -Y^\top X$
\n

OLS - with restrictions

OLS solution places no restriction on β. The optimization problem

$$
\arg\min_{\beta} \frac{1}{2}\beta^{\top} X^{\top} X \beta - Y^{\top} X \beta
$$

restricted inequality constraints on β , for example,

$$
\beta\geq \mathbf{0}
$$

can be solved with "quadratic programing"

Quadratic programming

Definition (Quadratic programming problem)

Let $\beta \in \mathcal{R}^n$, *W* be symmetric $n \times n$ matrix,

$$
\argmin_{\beta} \bm{d}^\top \beta + \frac{1}{2} \beta^\top \bm{W} \beta
$$

subject to

$$
R_1^\top \beta \geq b_1
$$

$$
R_2^\top \beta = b_2
$$

Notes

d, *W*, *R*, and *b* are fixed for a given optimization

\bullet β is unknown

Constrained estimation: dimensions and distance Constrained estimates $\tilde{\Delta}$, subject to $\Delta > 0$

$$
\tilde{\Delta} = \begin{cases} (\hat{\Delta}_1, \hat{\Delta}_2) & \text{if $\hat{\Delta}_1 \geq 0$ and $\hat{\Delta}_2 \geq 0$} \\ (\hat{\Delta}_1, 0) & \text{if $\hat{\Delta}_1 \geq 0$ and $\hat{\Delta}_2 < 0$} \\ (0, \hat{\Delta}_2) & \text{if $\hat{\Delta}_1 < 0$ and $\hat{\Delta}_2 \geq 0$} \\ (0, 0) & \text{if $\hat{\Delta}_1 < 0$ and $\hat{\Delta}_2 < 0$} \end{cases}
$$

How many free parameters? 2 (S1), 1 (S2, S4), or 0 (S3). What is probability of being "far" from H_0 ? By quadrant:

$$
\begin{aligned} &P(\tilde{\Delta}_1^2+\tilde{\Delta}_2^2
$$

Constrained estimation: dimensions and distance

In this simple example, each of quadrants is equally likely under H_0

$$
P(\tilde{\Delta}_1^2 + \tilde{\Delta}_2^2 < c' \mid \hat{\Delta} \in S_1) = P(\chi_2^2 < c')
$$
\n
$$
P(\tilde{\Delta}_1^2 + 0 < c' \mid \hat{\Delta} \in S_2) = P(\chi_1^2 < c')
$$
\n
$$
P(0 + \tilde{\Delta}_2^2 < c' \mid \hat{\Delta} \in S_4) = P(\chi_1^2 < c')
$$
\n
$$
P(0 + 0 < c' \mid \hat{\Delta} \in S_3) = 1
$$

So for given α , solve for c'

$$
P(\bar{\chi}^2 < c') = 1/4 P(\chi^2_2 < c') + 1/2 P(\chi^2_1 < c') + 1/4 = 1 - \alpha
$$

Distribution of hypothesis tests

- **Equality restriction versus unconstrained**
	- \blacktriangleright Fixed difference in dimensionality of models

 $Pr(-2[L(\tilde{\theta}) - L(\hat{\theta})] > c) = Pr(\chi^2_r > c)$

■ But number of free – restricted parms is stochastic if

- \blacktriangleright Equality restrictions versus inequality restriction
- \blacktriangleright Inequality restricted vs unconstrained
- \blacktriangleright Inequality restricted versus additional inequalities

$$
Pr(-2[L(\tilde{\theta}) - L(\hat{\theta})] > c') = Pr(\bar{\chi}^2 > c')
$$

=
$$
\sum_{k=1}^{K} w_k Pr(\chi_k^2 > c')
$$

where *w^k* is the probability of having a difference of *k* degrees of freedom between models

Overlap of sets: H_0 vs $\frac{H_0}{2}$ and H_0 vs H_{\nearrow}

Sequence of means

Best fitting mono inc.

Isotonic regression isoreg(x = x, y = y)

Diff in adjacent mean, unconstrained to constrained

Sequence of means

Best fitting mono inc.

Isotonic regression isoreg(x = x, y = y)

Diff in adjacent mean, unconstrained to constrained

Lots of draws of unconstrained diff means

Constrained v mono inc diff

Constrained v mono inc diff

In simulation,

- **•** could you determine *w*, probability of model dimensionality
- what is the distribution of the fits in constrained?

Transformation via cholesky

Transformation via cholesky

```
Y \leftarrow \text{matrix}(rnorm(3*n),ncol=3)d \leftarrow t (apply (Y, 1, \text{diff}))
z \leq t (apply(Y, 1, function(x) isoreg(x) \gamma f)
d2 \leftarrow t (apply(z, 1, diff))
```

```
(V \le -\text{cov}(d))Vi \leftarrow solve(V)A \leftarrow t (chol(Vi))
Ai \leftarrow solve(A)d3 \le -d * * * A
```
... now iid bivariate normal

Transformed optimization problem...

```
d \leftarrow t (apply (Y, 1, \text{diff}))
d2 \leftarrow t (apply(z, 1, diff))
(V \leq -\text{cov}(d))Vi \leftarrow solve(V)A \leftarrow t(\text{chol}(Vi))Ai<- solve(A)d3 \le -d * * A
```

```
qp2 \leftarrow function (X)solve.P( Dmat = A_ii%*%Vi%*%t(Ai),
              dvec = X * * A ,
              Amat = t(R \, \$* \, \$ t(Ai)) ,
              bvec = c(0,0)
```

```
X \leq -d[i,1]d4 \le - qp2(X)
```
Constrained fit on transformed means

Constrained v mono inc diff

Transformed vs untransformed

In simulation,

- R and V determine cone/constraint
- note: perpendicular: closest fitting point compare with untransformed
- **•** could you determine *w*, probability of model dimensionality (any different from untransformed?)
- what is the distribution of the fits in constrained?