Statistical Methods III: Spring 2013

Jonathan Wand

Stanford University

KLIC + model select

Outline

Testing shapes based on functional relationships

Challenges

- **1** Finding best model
	- \blacktriangleright imposing theoretically motivated constraints
	- \triangleright minimizing assumptions made for convenience, which may mislead
	- \blacktriangleright unconstrained curves are useful as specification test
- 2 Often there are more than one possible model.
	- ► goal: to find *set* of "best" models, equal good fits
	- \triangleright provide: level of confidence in this set, prespecified test size
- ³ Comparisons of shape constrained models are non-standard.
	- \triangleright within inequality constraints, dimensionality is stochastic
	- \triangleright requires formultating least favorable nulls
	- \triangleright complicated...

Definition (Kullback-Leibler information criterion (KLIC)) Let

 $y = y_1, ... y_n$ be a random sample with density $f(y) = \prod f(y_i).$ $g(\mathsf{y}) = \prod g(\mathsf{y}_i)$, which we will call the model density.

KLIC provides a summary of the fit of *g* as an approximation to *f*,

$$
\mathsf{KLIC} = \int f(y) \log \left(\frac{f(y)}{g(y)} \right) \, \mathsf{dy} = E \log \frac{f(y)}{g(y)}
$$

Note:

• what is the value of KLIC if $g = f$?

$$
\begin{aligned} \mathsf{KLIC} &= \int f(y) \log \left(\frac{f(y)}{g(y)} \right) \, dy \\ &= \int f(y) \log f(y) \, dy - \int f(y) \log g(y) \, dy \\ &= C_f - \int f(y) \log g(y) \, dy \\ &= C_f - E \log g(y) \end{aligned}
$$

Notes:

- \bullet for a given *y*, C_f does not depend on *g* (it is a constant)
- we often let density *g* depend on unknown parameters, $g(y, \theta)$
- the $\hat{\theta}$ that minimizes $-\log g(y, \theta)$ is the (quasi-)MLE maximizing:

$$
L(\theta) = \sum \log g(y_i, \theta)
$$

this *also* minimizes KLIC

What do we know? what do we not know? what do we want to know?

- if we knew *f*, we would not need *q* or KLIC analysis that follows!
- **•** in general, we do not know *f* (exception: bootstrap where we generate data)
- we choose *g* (e.g., likelihood)
- o often we choose a parametric and functional form with unknown parameters, e.g,. a logit

$$
g(y) = g(y; x, \beta) = \sum y_i \log \Lambda(x_i \beta) + (1 - y_i) \log \Lambda(x_i \beta)
$$

In this approach we know *impose* the logit form and additive aggregator function, but treate β as unknown.

- KLIC is of interest with respect a particular *g*, not a family of distributions with unspecified parameters...
- We might first ask: what is distance between f and \hat{g} , where \hat{g} is the density conditional on filling in parameters θ at a particular value $\hat{\theta}$.

- We need to keep track of data used to estimate $\hat{\theta}$ versus data used in expectation!
- **•** Assume you have one sample \tilde{v} , which you use to estimate $\hat{\theta}(\tilde{v})$ conditional on choice of *g*;
- we write $\hat{\theta}$ as a function of \tilde{y} in order to emphasize that some draw from *y* gives us MLE!
- Other stuff remains unchanged, we are going to integrate over distribution of all possible draws of *y*:

$$
\mathsf{KLIC} = C_f - \int f(y) \log g(y, \hat{\theta}(\tilde{y})) \, dy \\ = C_f - E_y \log g(y, \hat{\theta}(\tilde{y}))
$$

Expected KLIC

- $\circ \tilde{y}$ produces a single $\hat{\theta}(\tilde{y})$
- we are next interested in the expected difference between *f* and *g*, where we will condition on an estimation method for picking $\hat{\theta}$...
- this gives us the Expected KLIC:

$$
E(KLIC) = E_{\tilde{y}}C_f - E_{\tilde{y}}E_y \log g(y, \hat{\theta}(\tilde{y}))
$$

= $C_f - E_{\tilde{y}}E_y \log g(y, \hat{\theta}(\tilde{y}))$

because *C^f* is a constant.

Omitting *C^f* , can describe (sort of) E(KLIC) in terms of

$$
T = -E_y E_{\tilde{y}} \log g(\tilde{y}, \hat{\theta}(y))
$$

= -L(\hat{\theta}) + h(k, n)

- *k* is dimensionality of model,
- *n* is sample size
- *h* is a function
- we will see that different model criterion have different *h*, see AIC $(h = k)$ and BIC (1/2*k* log *n*) in following slides
- $h(k, n)$ is the amount we need to add (over average) to log-likelihood in order to recover Expected KLIC if *g* includes correct model!

AIC

Definition (Akaike information criterion (AIC))

Let *k* be the number of parameters in the model, and *L* be the maximized value of the log-likelihood, then

 $AIC = -2 \log L + 2k$

- operationalizes trade-off between goodness of fit and complexity/dimensionality (why?)
- provides information only relative to other models (why?)
- when used for comparing nested models, is related to LRT (how/why?)
- what happens when comparing non-nested models with same dimensionality?

Definition (Bayesian information criterion (BIC))

Let *k* be the number of parameters in the model, *n* be number of observations, and *L* be the maximized value of the log-likelihood, then

 $BIC = -2 \log L + k \log n$

- **•** again operationalizes trade-off between goodness of fit and complexity/dimensionality (why?)
- again provides information only relative to other models (why?)
- • odd assumptions (puts an equal prior on all models, irrespective of *k*), and lack of optimality on MSE criteria