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Outline

1 RDD – motivation

2 RDD – theory

3 Application: Lee/Caughey-Sekhon
Lee
Caughey-Sekhon
Why difference

4 Concluding comments
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Incumbency advantage
Question: Does incumbency provide an electoral advantage?

Regression approach (e.g., Gelman–King)

E[Vt+1] = β0 + β1Pt + β2(Pt × Rt+1) + β3Vt ,

Vt ∈ [0,1] is the Dem Share in election t

Pt ∈ {−1,1} is the Winning Party in election t

Rt+1 ∈ {0,1} indicates whether Incumbent Runs in election t + 1

Q: which parameter is “incumbency advantage”?
What are the possible threats to inference?

strategic exit (decision of Incumbents)
strategic entry (decision of Challengers)
selection effect of elections (better candidates win)

Q: which of these are “corrected” by regression?
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Incumbency advantage

Question: Does incumbency provide an electoral advantage?

Quasi experimental approach (e.g., RDD, Lee 2008)

∆ = E [Yt+1 | won with 50 perc] = E [Yt+1 | lost with 50 perc.]

At t + 1, compare vote share of party which just won at time t , with
those that just lost at t .
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RDD – election discontinuity

Non-incumbent at T+1

Incumbent at T+1

∆
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Democratic Win Proportion Next Election (T+1)
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RDD v regression

Which problem are same, which are different from regression?
strategic exit (decision of Incumbents)?
strategic entry (decision of Challengers)?
selection effect of elections (better candidates win)?
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RDD: notation

Let
Z is a continuous variable,
termed “forcing” variable: along which discontinuity occurs
e.g., vote share, GRE score
c deterministic and exogenously given threshold for discontinutity
e.g., 50%+1 (majority, plurality can also work); 790=scholarship.
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RDD: Assignment mechanism

Sharp design: assignment is determistic function of known,
common cutpoint c and value of Zi

Di =

{
1 if Zi ≥ c
0 if Zi < c

Fuzzy design: assignment probabilistic function of known,
common cutpoint c and value of Zi

lim
z↓c

P(Di = 1) 6= lim
z↑c

P(Di = 1)

Potential outcome is function of both Zi and potentially Di

Yi(0) = µ0(Zi) + ε0i

Yi(1) = µ1(Zi) + ε1i
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RDD: Parameter

Treatment at discontinuity (TAD)

TAD = E [Yi(1) | Di = 1,Zi = c]− E [Yi(0) | Di = 1,Zi = c]

NOTE:
again, we do not observe Yi(0) and Yi(1),
because at c we do observe Yi(0) (sharp RDD)

Study limits approaching each side of the threshold

∆RD = lim
z↓c

E [Yi | Zi = z]− lim
z↑c

E [Yi | Zi = z]

Under what conditions is TAD identified at limit?
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RDD: Sources of bias

∆RD = lim
z↓c

E [Yi | Zi = z]− lim
z↑c

E [Yi | Zi = z]

+ E [Yi(1) | Di = 1,Zi = c]− E [Yi(1) | Di = 1,Zi = c]

+ E [Yi(0) | Di = 1,Zi = c]− E [Yi(0) | Di = 1,Zi = c]

+ E [Yi(0) | Di = 0,Zi = c]− E [Yi(0) | Di = 0,Zi = c]

= E [Yi(1) | Di = 1,Zi = c]− E [Yi(0) | Di = 1,Zi = c]

+ E [Yi(0) | Di = 1,Zi = c]− E [Yi(0) | Di = 0,Zi = c]

+ lim
z↓c

E [Yi | Zi = z]− E [Yi(1) | Di = 1,Zi = c]

+ E [Yi(0) | Di = 0,Zi = c]− lim
z↑c

E [Yi | Zi = z]
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RDD: Sources of bias

1 E [Yi(0) | Di = 1,Zi = c]− E [Yi(0) | Di = 0,Zi = c]

selection bias: can indviduals control which side they are on?
randomization would makes this zero

2 lim
z↓c

E [Yi | Zi = z]− E [Yi(1) | Di = 1,Zi = c]

gap approaching limit, from above: continuity in µ1(Zi) would
make this zero

3 E [Yi(0) | Di = 0,Zi = c]− lim
z↑c

E [Yi | Zi = z]

gap approaching limit, from below: continuity in µ0(Zi) would
make this zero
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RDD: Assumptions

Let there be a known, fixed z = c such that
(1) discontinuity in treatment assignment

lim
z↓c+

Pr(D = 1 | Z = z) 6= lim
z↑c−

Pr(D = 1 | Z = z)

(2) continuity in potential outcomes

lim
z↓c+

Pr(Yj ≤ r | Z = z) = lim
z↑c−

Pr(Yj ≤ r | Z = z) (j = 0,1)

(3) Continuity in other covariates, possible confounders

lim
z↓c+

Pr(Xj ≤ r | Z = z) = lim
z↑c−

Pr(Xj ≤ r | Z = z) (j = 0,1)

there are no jumps at the treatment threshold c
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RDD: Assumptions
Let there be a known, fixed z = c such that

(1.b) discontinuity in treatment assignment, sharp design

lim
z↓c+

Pr(D = 1 | Z = z) = 1

lim
z↑c−

Pr(D = 1 | Z = z) = 0

Meaning: individual receives treatment iff observed covariate Zi
crosses known threshold c

(2.b) continuity in expectation of potential outcomes

lim
z↓c+

E(Yj | Z = z) = lim
z↑c−

E(Yj | Z = z) (j = 0,1)

(3.b) Continuity in expectation of covariates

lim
z↓c+

E(Xj | Z = z) = lim
z↑c−

E(Xj | Z = z) (j = 0,1)

Q: what does this imply about comparison of X on either side of c?
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RDD – placebo test, balance test

Non-incumbent at T−1
Incumbent at T−1

∆ = 0
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RDD: homogeneous treatment effects, sharp RDD

Assume (1.b) and (2.b), and τ = Y1 − Y0, such that,

Yi = τDi + Y0i

Using assumptions (1.a)-(1.c) and homogenous effect model, let’s
prove that

∆RD = lim
z↓c+

E [Y |Z = z]− lim
z↑c−

E [Y |Z = z]

= τ

= E [Y (1)− Y (0)|Z = c]
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RDD: homogeneous treatment effects, sharp RDD
Let ε > 0, and consider, by (2.b, continuity) and homogeneity,

Y+ = lim
z↓c+

E [Y |Z = z] = lim
ε↓0

E [Yi(1)|Zi = c + ε]

= lim
ε↓0

E [Yi(0) + τ |Zi = c + ε]

= τ + lim
ε↓0

E [Yi(0)|Zi = c + ε]

= τ + E [Yi(0)|Zi = c]

and

Y− = lim
z↑c−

E [Y |Z = z] = lim
ε↑0

E [Yi(0)|Zi = c − ε]

= E [Yi(0)|Zi = c]

So,

Y+ − Y− = τ = E [Y (1)− Y (0)|Z = c]
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RDD: heterogeneous treatment effects
Assume (1.b) and (2.b), suppose τi = Y1i − Y0i

Theorem E [τi |Zi = c] = Y+ − Y−

Proof

lim
ε↓0

E [Yi |Zi = c + εi ] = lim
ε↓0

E [Yi(0) + τi |Zi = c + εi ]

= E [τi |Zi = c] + E [Yi(0)|Zi = c]

lim
ε↑0

E [Yi |Zi = c + εi ] = lim
ε↑0

E [Yi(0)|Zi = c + εi ]

= E [Yi(0)|Zi = c]

Y+−Y− = E [τi |Zi = c] + E [Yi(0)|Zi = c]−E [Yi(0)|Zi = c] = E [τi |Zi = c]
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RDD: homogeneous treatment effects, fuzzy

Under fuzzy, can solve for

τ =
limz↓c+ E(Y |Z = z)− limz↑c− E(Y |Z = z)

limz↓c+ E(Di |Z = z)− limz↑c− E(Di |Z = z)

Q: What do you call this estimator?
Q: Where have you seen it before?

Simplifies under sharp

τ = lim
z↓c+

E(Y |Z = z)− lim
z↑c−

E(Y |Z = z)

Q: How/why?

Jonathan Wand (Stanford University) Statistical Methods III: Spring 2013 RDD + applications 21 / 46



RDD: Estimation

Consider

Y+ = lim
z↓c

E [Yi | Zi = z]

Y− = lim
z↑c

E [Yi | Zi = z]

Can we estimate these quantities?

What would we need?
Do we have enough (or any) data at the limit for c ?
At the limit can we observe both D = 1 and D = 0?
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RDD: Estimation

Estimator, for some δ that you choose

Y+ =

∑n
i=1 Yi · 1(Zi ∈ [c, c + δ])∑n

i=1 1(Zi ∈ [c, c + δ])

Y+ =

∑n
i=1 Yi · 1(Zi ∈ [c, c + δ])∑n

i=1 1(Zi ∈ [c, c + δ])
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RDD

Hahn, Todd, deKlaauw (2001)
treatment assignment insufficient to identify TAD
proved need for continuity restrictions
but hard to adjudicate / unclear behavioral
implications/assumptions

Lee (2007)
key is that location of Z around threshold smoothly probabilistic
no one near threshold can “control” precisely which side of c they
are on
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RDD: Lee

Let V = Z − c be the observable forcing variable
Condition (2b) Vi must be drawn from distribution that is
sufficiently smooth
specifically, F (v |w) is continuously differentiable at v = 0
V can be a function of (unobserved) type/effort W
V can be correlated with potential outcomes
assignment

Di = 1(Vi ≥ 0)

What does continuity of V give?
probability of being just above/below c the same
people can’t pile up on one side of c
same distribution of characteristics on either side of c
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RDD: difficulties

selection / manipulation of forcing vairable
I Can someone stop/force which side they are on
I Do we change who is around the cutpoint individuals fighting to get

over cutpoint?

May be able to test for both of these; only the latter is problematic
estimation / functional form

I Is there enough data near cutpoint?
I To what extent do results change as a function of model choice

specificity: context / localness
I Is TAD really of interest?
I To what extent does TAD describe potential effects elsewhere on Z
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RDD: Lee (2008) vote share, t+1
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Democratic Win Proportion Next Election (T+1)
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Democratic Win Proportion Previous Election (T−1)

Democratic Margin (%), Election T
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Democratic Margin in Close Elections at t
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Broken Down by Incumbent Party at t

Democrat−Held Seats
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F
re

qu
en

cy
 C

ou
nt

 in
 0

.5
%

 B
in

s

−4 −2 0 2 4

0

10

20

30

40

18

14 15 15

22
20

15

8

25

20

12

17 17

23

31

22

Jonathan Wand (Stanford University) Statistical Methods III: Spring 2013 RDD + applications 34 / 46



Broken Down by Incumbent Party at t

Republican−Held Seats
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Incumbent Party’s Margin in Close Elections at t

Incumbent Party Margin (%)
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Democratic Campaign Spending %
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Donations to Democratic %

Democratic Margin (%)
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Covariate Balance

Variable
Name

Valid
Cases

D Win
Mean

D Loss
Mean

Dem Win t − 1 85 0.58 0.19 ●

Dem % t − 1 85 51 45

Dem Spending % 47 54 45

Dem Donation % 34 56 45

CQ Rating {−1, 0, 1} 69 0.23 −0.29

Dem Inc in Race 85 0.49 0.14 ●

Rep Inc in Race 85 0.28 0.62 ●

Partisan Swing 85 −1.7 4.0

Dem Win t + 1 85 0.74 0.33 ●

Dem % t + 1 85 53 43

0 .05 .1 1p−value
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Covariate Balance

Variable
Name

Valid
Cases

D Win
Mean

D Loss
Mean

Dem Sec of State 85 0.47 0.31 ●

Dem Governor 85 0.40 0.48 ●

Dem Pres % Margin 79 −0.09 −0.10

Voter Turnout % 85 37 34

Pct Gov't Worker 73 5.1 4.4

Pct Urban 73 70 65

Pct Black 73 4.9 5.0

Pct Foreign Born 73 4.0 4.1

0 .05 .1 1p−value
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National Partisan Swings

• Partisan swings are imbalanced:
1958 (pro-Democratic tide): all 6 close elections occurred in
Republican-held seats
1994 (pro-Republican tide): all 5 close elections occurred in
Democratic-held seats
Close elections do not generally occur in 50/50 districts
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There is Strategic Exit

Strategic exit among incumbents
20% who barely win retire prior to next election
but all candidates who barely won first election
ran for reelection

• Change over time:
1994: less evidence of strategic exit, lots of strategic entry
2006: 18 Republican open seats versus 9 Democratic open seats
2010: In non-safe seats, 6 Republicans retired, but 15 Democrats
retired
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Democratic Incumbent in Race
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RDD: practical suggestions

1 Graph data
2 Estimate using (flexible) linear regression in small bandwidth
3 check robustness of assumptions
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